Last updated: 2020-06-16

Checks: 7 0

Knit directory: Fiber_Intervention_Study/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a16e6ef. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    code/.Rhistory
    Ignored:    reference-papers/Dietary_Variables.xlsx
    Ignored:    reference-papers/Johnson_2019.pdf
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/glme_microbiome_genus_subset.Rmd
    Untracked:  data/analysis-data/DataDictionary_TOTALS_2018Record.xls
    Untracked:  tab/tables_results_2020-06-08.zip
    Untracked:  tab/tables_results_2020-06-08/

Unstaged changes:
    Modified:   analysis/data_processing.Rmd
    Modified:   analysis/glme_microbiome.Rmd
    Modified:   analysis/microbiome_diet_trends.Rmd
    Modified:   code/get_cleaned_data.R
    Modified:   code/microbiome_statistics_and_functions.R
    Modified:   fig/figure2.pdf
    Modified:   fig/figure3.pdf
    Modified:   fig/figure4.pdf
    Modified:   fig/figure4_final_microbiome_diet_variables_over_time.pdf
    Modified:   fig/figure4_legend.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_beta_diversity.Rmd) and HTML (docs/analysis_beta_diversity.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9da43aa noah-padgett 2020-06-08 Build site.
Rmd 94015da noah-padgett 2020-06-08 revised figures
html 94015da noah-padgett 2020-06-08 revised figures
html 0733fe5 noah-padgett 2020-05-21 Build site.
Rmd d576bdd noah-padgett 2020-05-21 tables outputted
html d576bdd noah-padgett 2020-05-21 tables outputted
Rmd ef7cab9 noah-padgett 2020-05-14 blood measure analyses
Rmd 25bfffd noah-padgett 2020-05-07 fixed index references
html 25bfffd noah-padgett 2020-05-07 fixed index references
Rmd 589bcf4 noah-padgett 2020-05-07 updated figures
html 589bcf4 noah-padgett 2020-05-07 updated figures
Rmd 2d97c53 noah-padgett 2020-04-16 updated figure heights
html 2d97c53 noah-padgett 2020-04-16 updated figure heights
Rmd 774a55f noah-padgett 2020-04-16 updated beta diversity and permanova
html 774a55f noah-padgett 2020-04-16 updated beta diversity and permanova

Beta-Diversity

General Ordination Plot

# Ordinate
pcoa <- ordinate(
  physeq = phylo_data, 
  method = "PCoA", 
  distance = "bray"
)

# Plot 
p <- plot_ordination(
  physeq = phylo_data,
  ordination = pcoa,
  color = "Week",
  shape = "Intervention",
  title = "PCoA plot of community differences over time"
) 
p +
  geom_point(aes(color = Week), alpha = 0.7, size = 4) +
  scale_color_manual(values = c("#a65628", "red", "#ffae19","#4daf4a")) +
  geom_point(colour = "grey90", size = 1.5) 

PERMANOVA

Below, we present the permutation based ANOVA results for community differences. We conducted these analyses with three models

  1. Using Week
  2. Using Intervention
  3. Using Week \(\times\) Intervention interaction

Compute the distances matrices and get ordination objects.

# Calculate distance matrices
dist_bray <- phyloseq::distance(phylo_data, method = "bray")
dist_unwt <- phyloseq::distance(phylo_data, method="unifrac", weighted=F)
dist_wt <- phyloseq::distance(phylo_data, method="unifrac", weighted=T)

# plot ordination
ord_bray = ordinate(phylo_data, method="PCoA", distance=dist_bray)
ord_unwt = ordinate(phylo_data, method="PCoA", distance=dist_unwt)
ord_wt = ordinate(phylo_data, method="PCoA", distance=dist_wt)

# sample data
df <- data.frame(sample_data(phylo_data))

# colors
cols <- c("#fe9700","#00a2f2", "#662a00", "#c91acb","grey60","#858c69", "#a8863a", "#737373", "#d43f1f", "#5dd047",  "#ffff59")

Analysis by Week

p1 <- plot_ordination(phylo_data, ord_bray, color="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Bray-Curtis distance, by Week")

p2 <- plot_ordination(phylo_data, ord_unwt, color="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Unweighted Unifrac distance, by Week")

p3 <- plot_ordination(phylo_data, ord_wt, color="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Weight Unifrac distance, by Week")
p1 + p2 + p3 + plot_layout(ncol=1)

# Bray-Curtis
adonis(dist_bray ~ Week, data = df)

Call:
adonis(formula = dist_bray ~ Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

          Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)
Week       3    0.0737 0.024579 0.18048 0.01614      1
Residuals 33    4.4941 0.136186         0.98386       
Total     36    4.5679                  1.00000       
beta <- betadisper(dist_bray, df$Week)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df  Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     3 0.01379 0.0045955 0.3485    999  0.799
Residuals 33 0.43519 0.0131877                     
# Unweighted Unifrac
adonis(dist_unwt ~ Week, data = df)

Call:
adonis(formula = dist_unwt ~ Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

          Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)
Week       3    0.1176 0.039214 0.42432 0.03714      1
Residuals 33    3.0497 0.092415         0.96286       
Total     36    3.1674                  1.00000       
beta <- betadisper(dist_unwt, df$Week)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     3 0.002658 0.0008861 0.1983    999  0.893
Residuals 33 0.147440 0.0044679                     
# Weighted Unifrac
adonis(dist_wt ~ Week, data = df)

Call:
adonis(formula = dist_wt ~ Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

          Df SumsOfSqs   MeanSqs F.Model    R2 Pr(>F)
Week       3   0.01289 0.0042983 0.14493 0.013      1
Residuals 33   0.97871 0.0296578         0.987       
Total     36   0.99160                   1.000       
beta <- betadisper(dist_wt, df$Week)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     3 0.003299 0.0010998 0.1571    999  0.922
Residuals 33 0.231081 0.0070025                     

Analysis by Intervention

p1 <- plot_ordination(phylo_data, ord_bray, color="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Bray-Curtis distance, by Intervention")

p2 <- plot_ordination(phylo_data, ord_unwt, color="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Unweighted Unifrac distance, by Intervention")

p3 <- plot_ordination(phylo_data, ord_wt, color="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Weight Unifrac distance, by Intervention")
p1 + p2 + p3 + plot_layout(ncol=1)

# Bray-Curtis
adonis(dist_bray ~ Intervention, data = df)

Call:
adonis(formula = dist_bray ~ Intervention, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

             Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)  
Intervention  1    0.3446 0.34458  2.8556 0.07544  0.015 *
Residuals    35    4.2233 0.12067         0.92456         
Total        36    4.5679                 1.00000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_bray, df$Intervention)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df  Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     1 0.00598 0.0059801 0.5103    999  0.442
Residuals 35 0.41017 0.0117192                     
# Unweighted Unifrac
adonis(dist_unwt ~ Intervention, data = df)

Call:
adonis(formula = dist_unwt ~ Intervention, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

             Df SumsOfSqs  MeanSqs F.Model     R2 Pr(>F)  
Intervention  1    0.1786 0.178624  2.0918 0.0564  0.025 *
Residuals    35    2.9887 0.085392         0.9436         
Total        36    3.1674                  1.0000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_unwt, df$Intervention)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     1 0.002663 0.0026630 0.7857    999  0.404
Residuals 35 0.118624 0.0033893                     
# Weighted Unifrac
adonis(dist_wt ~ Intervention, data = df)

Call:
adonis(formula = dist_wt ~ Intervention, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

             Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
Intervention  1   0.06784 0.067841  2.5704 0.06842  0.068 .
Residuals    35   0.92376 0.026393         0.93158         
Total        36   0.99160                  1.00000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_wt, df$Intervention)
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     1 0.003642 0.0036417 0.6068    999  0.447
Residuals 35 0.210051 0.0060015                     

Analysis by Intervention

p1 <- plot_ordination(phylo_data, ord_bray,
                      color="Week", shape="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  geom_point(colour = "grey90", size = 1.5) +
  labs(title="PCoA on Bray-Curtis distance, by Week & Intervention")+
  theme(legend.position = "none")

p2 <- plot_ordination(phylo_data, ord_unwt,
                      color="Week", shape="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  geom_point(colour = "grey90", size = 1.5) +
  labs(title="PCoA on Unweighted Unifrac distance, by Week & Intervention")+
  theme(legend.position = "none")

p3 <- plot_ordination(phylo_data, ord_wt,
                      color="Week", shape="Intervention") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  geom_point(colour = "grey90", size = 1.5) +
  labs(title="PCoA on Weight Unifrac distance, by Week & Intervention")+
  theme(legend.position = "bottom")
p1 + p2 + p3 + plot_layout(ncol=1)

# Bray-Curtis
adonis(dist_bray ~ Intervention*Week, data = df)

Call:
adonis(formula = dist_bray ~ Intervention * Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

                  Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)  
Intervention       1    0.3446 0.34458 2.50480 0.07544  0.027 *
Week               3    0.0757 0.02523 0.18336 0.01657  1.000  
Intervention:Week  3    0.1582 0.05272 0.38324 0.03463  0.996  
Residuals         29    3.9895 0.13757         0.87337         
Total             36    4.5679                 1.00000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_bray, interaction(df$Intervention, df$Week))
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df  Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     7 0.02637 0.0037678 0.2664    999  0.972
Residuals 29 0.41020 0.0141449                     
# Unweighted Unifrac
adonis(dist_unwt ~ Intervention*Week, data = df)

Call:
adonis(formula = dist_unwt ~ Intervention * Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

                  Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
Intervention       1    0.1786 0.178624 1.86888 0.05640  0.046 *
Week               3    0.1121 0.037379 0.39108 0.03540  0.999  
Intervention:Week  3    0.1048 0.034937 0.36553 0.03309  1.000  
Residuals         29    2.7718 0.095579         0.87511         
Total             36    3.1674                  1.00000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_unwt, interaction(df$Intervention, df$Week))
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     7 0.021912 0.0031302 0.6816    999  0.708
Residuals 29 0.133173 0.0045922                     
# Weighted Unifrac
adonis(dist_wt ~ Intervention*Week, data = df)

Call:
adonis(formula = dist_wt ~ Intervention * Week, data = df) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

                  Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
Intervention       1   0.06784 0.067841 2.28504 0.06842  0.098 .
Week               3   0.01366 0.004553 0.15337 0.01378  0.999  
Intervention:Week  3   0.04912 0.016372 0.55144 0.04953  0.846  
Residuals         29   0.86099 0.029689         0.86828         
Total             36   0.99160                  1.00000         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
beta <- betadisper(dist_wt, interaction(df$Intervention, df$Week))
permutest(beta)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
          Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
Groups     7 0.018049 0.0025784 0.3502    999  0.918
Residuals 29 0.213534 0.0073632                     

Beta diversity plot (Figure 2)

p1 <- plot_ordination(phylo_data, ord_bray, color="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Bray-Curtis distance, by Week")

p2 <- plot_ordination(phylo_data, ord_wt, color="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Weight Unifrac distance, by Week")


dat.bray <- p1$data
dat.wt <- p2$data

so <- distinct(microbiome_data$meta.dat, SubjectID, .keep_all = T)

subjectorder <- so$SubjectID[order(so$Intervention, decreasing = F)]

dat.bray$SubjectID10 <- factor(dat.bray$SubjectID,
                             levels = subjectorder,
                             labels=c(1:11))


dat.wt$SubjectID10 <- factor(dat.wt$SubjectID,
                             levels = subjectorder,
                             labels=c(1:11))

ids <- 1:6
dat.bray$Intervention2 <- ifelse(dat.bray$SubjectID10 %in% ids, "Group A", "Group B")
dat.wt$Intervention2 <- ifelse(dat.wt$SubjectID10 %in% ids, "Group A", "Group B")


p1 <- ggplot(dat.wt, aes(x=Week, y=Axis.1, color=Intervention2)) +
  geom_point(size=3)+
  facet_wrap(.~SubjectID10,ncol=6) +
  scale_color_manual(values=cols)+
  labs(y="PC1", 
       title="Individualized beta-diversity over study duration")+
  guides(colour= guide_legend(title = "Intervention"))+
  theme(panel.grid = element_blank(),
        strip.text.x = element_text(angle = 0, size = 11, face = "italic"),
        axis.text.y = element_text(size = 10),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5),
        #axis.title.x = element_blank(),
        strip.background = element_blank(),
        legend.position = c(0.92, 0.25),
        #legend.text = element_text(size = 7),
        #legend.title = element_blank(),
        panel.spacing.x=unit(0.001, "lines"))

p1

  library(cowplot)
  #p1.leg <- get_legend(p1)
  
  #p1.nl <- p1 + theme(legend.position = "none")

  ggsave("fig/figure2.pdf", p1, width=7.9,height=4.5, units="in")
  
  
  #bigplotlegend <- plot_grid(p1.leg, nrow =1)
  
  #save_plot("fig/figure2_legend.pdf", bigplotlegend,
  #          base_width = 7.9, base_height = 4.5)

Beta diversity plot (Figure 3)

p1 <- plot_ordination(phylo_data, ord_bray,
                      color="Intervention", shape="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Bray-Curtis distance",
       tag="A")+
  theme(panel.grid = element_blank(),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5))

p2 <- plot_ordination(phylo_data, ord_unwt,
                      color="Intervention", shape="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Unweighted Unifrac distance",
       tag="B")+
  theme(panel.grid = element_blank(),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5))

p3 <- plot_ordination(phylo_data, ord_wt,
                      color="Intervention", shape="Week") +
  geom_point(size=3) +
  scale_colour_manual(values=cols)+
  labs(title="PCoA on Weight Unifrac distance",
       tag="C")+
  theme(panel.grid = element_blank(),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5))


  library(cowplot)
  p1.leg <- get_legend(p1)
  
  p1.nl <- p1 + theme(legend.position = "none")
  p2.nl <- p2 + theme(legend.position = "none")
  p3.nl <- p3 + theme(legend.position = "none")
  #p <- p1.nl + p2.nl + p3.nl + plot_layout(ncol=1, guides="collect")
  p <- p1 + p2 + p3 + plot_layout(ncol=1, guides="collect")
  p

  ggsave("fig/figure3.pdf", p, width=5,height=7, units="in")
  
  
  #bigplotlegend <- plot_grid(p1.leg, nrow =1)
  
  #save_plot("fig/figure3_legend.pdf", bigplotlegend,
  #          base_width = 7.9, base_height = 4.5)

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_1.0.0     microbiome_1.8.0  car_3.0-8         carData_3.0-4    
 [5] gvlma_1.0.0.3     patchwork_1.0.0   viridis_0.5.1     viridisLite_0.3.0
 [9] gridExtra_2.3     xtable_1.8-4      kableExtra_1.1.0  plyr_1.8.6       
[13] data.table_1.12.8 readxl_1.3.1      forcats_0.5.0     stringr_1.4.0    
[17] dplyr_0.8.5       purrr_0.3.4       readr_1.3.1       tidyr_1.1.0      
[21] tibble_3.0.1      ggplot2_3.3.0     tidyverse_1.3.0   lmerTest_3.1-2   
[25] lme4_1.1-23       Matrix_1.2-18     vegan_2.5-6       lattice_0.20-38  
[29] permute_0.9-5     phyloseq_1.30.0  

loaded via a namespace (and not attached):
 [1] Rtsne_0.15          minqa_1.2.4         colorspace_1.4-1   
 [4] rio_0.5.16          ellipsis_0.3.1      rprojroot_1.3-2    
 [7] XVector_0.26.0      fs_1.4.1            rstudioapi_0.11    
[10] farver_2.0.3        fansi_0.4.1         lubridate_1.7.8    
[13] xml2_1.3.2          codetools_0.2-16    splines_3.6.3      
[16] knitr_1.28          ade4_1.7-15         jsonlite_1.6.1     
[19] workflowr_1.6.2     nloptr_1.2.2.1      broom_0.5.6        
[22] cluster_2.1.0       dbplyr_1.4.4        BiocManager_1.30.10
[25] compiler_3.6.3      httr_1.4.1          backports_1.1.7    
[28] assertthat_0.2.1    cli_2.0.2           later_1.0.0        
[31] htmltools_0.4.0     tools_3.6.3         igraph_1.2.5       
[34] gtable_0.3.0        glue_1.4.1          reshape2_1.4.4     
[37] Rcpp_1.0.4.6        Biobase_2.46.0      cellranger_1.1.0   
[40] vctrs_0.3.0         Biostrings_2.54.0   multtest_2.42.0    
[43] ape_5.3             nlme_3.1-144        iterators_1.0.12   
[46] xfun_0.14           openxlsx_4.1.5      rvest_0.3.5        
[49] lifecycle_0.2.0     statmod_1.4.34      zlibbioc_1.32.0    
[52] MASS_7.3-51.5       scales_1.1.1        hms_0.5.3          
[55] promises_1.1.0      parallel_3.6.3      biomformat_1.14.0  
[58] rhdf5_2.30.1        curl_4.3            yaml_2.2.1         
[61] stringi_1.4.6       S4Vectors_0.24.4    foreach_1.5.0      
[64] BiocGenerics_0.32.0 zip_2.0.4           boot_1.3-24        
[67] rlang_0.4.6         pkgconfig_2.0.3     evaluate_0.14      
[70] Rhdf5lib_1.8.0      labeling_0.3        tidyselect_1.1.0   
[73] magrittr_1.5        R6_2.4.1            IRanges_2.20.2     
[76] generics_0.0.2      DBI_1.1.0           foreign_0.8-75     
[79] pillar_1.4.4        haven_2.3.0         whisker_0.4        
[82] withr_2.2.0         mgcv_1.8-31         abind_1.4-5        
[85] survival_3.1-8      modelr_0.1.8        crayon_1.3.4       
[88] rmarkdown_2.1       grid_3.6.3          blob_1.2.1         
[91] git2r_0.27.1        reprex_0.3.0        digest_0.6.25      
[94] webshot_0.5.2       httpuv_1.5.2        numDeriv_2016.8-1.1
[97] stats4_3.6.3        munsell_0.5.0