Last updated: 2020-06-17

Checks: 6 1

Knit directory: Fiber_Intervention_Study/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a16e6ef. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/.Rhistory
    Ignored:    reference-papers/Dietary_Variables.xlsx
    Ignored:    reference-papers/Johnson_2019.pdf
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/glme_microbiome_genus_subset.Rmd
    Untracked:  analysis/glme_microbiome_phylum.Rmd
    Untracked:  analysis/microbiome_genus_prevotella_bacteroides.Rmd
    Untracked:  analysis/microbiome_genus_relative_abundance.Rmd
    Untracked:  data/analysis-data/DataDictionary_TOTALS_2018Record.xls
    Untracked:  fig/figure1.pdf
    Untracked:  fig/figure5_glmm_genus.pdf
    Untracked:  fig/figure5_glmm_phylum.pdf
    Untracked:  fig/misc/
    Untracked:  tab/results_glmm_microbiome_genus.csv
    Untracked:  tab/results_glmm_microbiome_phylum.csv
    Untracked:  tab/tables_results_2020-06-08.zip
    Untracked:  tab/tables_results_2020-06-08/

Unstaged changes:
    Modified:   analysis/alpha_diversity.Rmd
    Modified:   analysis/data_processing.Rmd
    Deleted:    analysis/glme_microbiome.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/microbiome_diet_trends.Rmd
    Modified:   code/get_cleaned_data.R
    Modified:   code/microbiome_statistics_and_functions.R
    Deleted:    fig/figure2.pdf
    Modified:   fig/figure2_individual_beta_diversity_over_study.pdf
    Deleted:    fig/figure3.pdf
    Modified:   fig/figure3_PCoA_analysis_results_beta_diversity_between_groups.pdf
    Deleted:    fig/figure4.pdf
    Modified:   fig/figure4_final_microbiome_diet_variables_over_time.pdf
    Modified:   fig/figure4_legend.pdf
    Deleted:    fig/figure5_glmm.pdf
    Deleted:    fig/figures-2020-06-08.zip
    Deleted:    fig/glmm_res.pdf
    Deleted:    fig/glmm_res.png
    Deleted:    fig/microbiome_abundance_glmm_results.pdf
    Deleted:    fig/predicted_Actinobacteria.png
    Deleted:    fig/predicted_Actinobacteria_model0.png
    Deleted:    fig/predicted_Actinobacteria_model1.png
    Deleted:    fig/predicted_Actinobacteria_model2.png
    Deleted:    fig/predicted_Actinobacteria_model3.png
    Deleted:    fig/predicted_Actinobacteria_model4.png
    Deleted:    fig/predicted_Actinobacteria_model5.png
    Deleted:    fig/predicted_Actinobacteria_model6.png
    Deleted:    fig/predicted_Actinobacteria_model7.png
    Deleted:    fig/predicted_Bacteroidetes.png
    Deleted:    fig/predicted_Bacteroidetes_model0.png
    Deleted:    fig/predicted_Bacteroidetes_model1.png
    Deleted:    fig/predicted_Bacteroidetes_model2.png
    Deleted:    fig/predicted_Bacteroidetes_model3.png
    Deleted:    fig/predicted_Bacteroidetes_model4.png
    Deleted:    fig/predicted_Bacteroidetes_model5.png
    Deleted:    fig/predicted_Bacteroidetes_model6.png
    Deleted:    fig/predicted_Bacteroidetes_model7.png
    Deleted:    fig/predicted_Cyanobacteria.png
    Deleted:    fig/predicted_Cyanobacteria_model0.png
    Deleted:    fig/predicted_Cyanobacteria_model1.png
    Deleted:    fig/predicted_Cyanobacteria_model2.png
    Deleted:    fig/predicted_Cyanobacteria_model3.png
    Deleted:    fig/predicted_Cyanobacteria_model4.png
    Deleted:    fig/predicted_Cyanobacteria_model5.png
    Deleted:    fig/predicted_Cyanobacteria_model6.png
    Deleted:    fig/predicted_Cyanobacteria_model7.png
    Deleted:    fig/predicted_Euryarchaeota.png
    Deleted:    fig/predicted_Euryarchaeota_model0.png
    Deleted:    fig/predicted_Euryarchaeota_model1.png
    Deleted:    fig/predicted_Euryarchaeota_model2.png
    Deleted:    fig/predicted_Euryarchaeota_model3.png
    Deleted:    fig/predicted_Euryarchaeota_model4.png
    Deleted:    fig/predicted_Euryarchaeota_model5.png
    Deleted:    fig/predicted_Euryarchaeota_model6.png
    Deleted:    fig/predicted_Euryarchaeota_model7.png
    Deleted:    fig/predicted_Firmicutes.png
    Deleted:    fig/predicted_Firmicutes_model0.png
    Deleted:    fig/predicted_Firmicutes_model1.png
    Deleted:    fig/predicted_Firmicutes_model2.png
    Deleted:    fig/predicted_Firmicutes_model3.png
    Deleted:    fig/predicted_Firmicutes_model4.png
    Deleted:    fig/predicted_Firmicutes_model5.png
    Deleted:    fig/predicted_Firmicutes_model6.png
    Deleted:    fig/predicted_Firmicutes_model7.png
    Deleted:    fig/predicted_Fusobacteria.png
    Deleted:    fig/predicted_Fusobacteria_model0.png
    Deleted:    fig/predicted_Fusobacteria_model1.png
    Deleted:    fig/predicted_Fusobacteria_model2.png
    Deleted:    fig/predicted_Fusobacteria_model3.png
    Deleted:    fig/predicted_Fusobacteria_model4.png
    Deleted:    fig/predicted_Fusobacteria_model5.png
    Deleted:    fig/predicted_Fusobacteria_model6.png
    Deleted:    fig/predicted_Fusobacteria_model7.png
    Deleted:    fig/predicted_Lentisphaerae.png
    Deleted:    fig/predicted_Lentisphaerae_model0.png
    Deleted:    fig/predicted_Lentisphaerae_model1.png
    Deleted:    fig/predicted_Lentisphaerae_model2.png
    Deleted:    fig/predicted_Lentisphaerae_model3.png
    Deleted:    fig/predicted_Lentisphaerae_model4.png
    Deleted:    fig/predicted_Lentisphaerae_model5.png
    Deleted:    fig/predicted_Lentisphaerae_model6.png
    Deleted:    fig/predicted_Lentisphaerae_model7.png
    Deleted:    fig/predicted_Proteobacteria.png
    Deleted:    fig/predicted_Proteobacteria_model0.png
    Deleted:    fig/predicted_Proteobacteria_model1.png
    Deleted:    fig/predicted_Proteobacteria_model2.png
    Deleted:    fig/predicted_Proteobacteria_model3.png
    Deleted:    fig/predicted_Proteobacteria_model4.png
    Deleted:    fig/predicted_Proteobacteria_model5.png
    Deleted:    fig/predicted_Proteobacteria_model6.png
    Deleted:    fig/predicted_Proteobacteria_model7.png
    Deleted:    fig/predicted_Tenericutes.png
    Deleted:    fig/predicted_Tenericutes_model0.png
    Deleted:    fig/predicted_Tenericutes_model1.png
    Deleted:    fig/predicted_Tenericutes_model2.png
    Deleted:    fig/predicted_Tenericutes_model3.png
    Deleted:    fig/predicted_Tenericutes_model4.png
    Deleted:    fig/predicted_Tenericutes_model5.png
    Deleted:    fig/predicted_Tenericutes_model6.png
    Deleted:    fig/predicted_Tenericutes_model7.png
    Deleted:    fig/predicted_Verrucomicrobia.png
    Deleted:    fig/predicted_Verrucomicrobia_model0.png
    Deleted:    fig/predicted_Verrucomicrobia_model1.png
    Deleted:    fig/predicted_Verrucomicrobia_model2.png
    Deleted:    fig/predicted_Verrucomicrobia_model3.png
    Deleted:    fig/predicted_Verrucomicrobia_model4.png
    Deleted:    fig/predicted_Verrucomicrobia_model5.png
    Deleted:    fig/predicted_Verrucomicrobia_model6.png
    Deleted:    fig/predicted_Verrucomicrobia_model7.png

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Microbiome Composition

Specific Subset of Genera

Tables of Summary Information

# genera to keep:
keepGenus <- c("__Akkermansia", "__Bacteroides", "__Bifidobacterium", "__Clostridium_sensu_stricto_1", "__Dorea", "__Faecalibacterium", "__Lachnospira", "__Lactobacillus", "__Prevotella", "__Roseburia", "__Ruminococcus_1")

mphyseq = psmelt(phylo_data)
mphyseq2 <- mphyseq %>%
  dplyr::mutate(
    Genus = as.character(Genus),
    Genus = ifelse(Genus %in% keepGenus, Genus, "__zOther")) %>%
  dplyr::group_by(Week) %>%
  dplyr::mutate(Total = sum(Abundance)) %>%
  dplyr::ungroup()%>%
  dplyr::group_by(Week, Genus) %>%
  dplyr::mutate(GenusAbund = sum(Abundance),
                RelAbund = GenusAbund/Total) %>%
  dplyr::summarise(RelAbund = mean(RelAbund))

mphyseq2 <- mphyseq2 %>%
  pivot_wider(names_from = "Week",
              values_from = "RelAbund")

kable(mphyseq2, format="html", digits=3,
      caption="Relative abundance of genera by Week") %>%
  kable_styling(full_width = T) %>%
  scroll_box(width="100%", height="5in")
Relative abundance of genera by Week
Genus 1 4 8 12
__Akkermansia 0.036 0.041 0.046 0.039
__Bacteroides 0.338 0.344 0.360 0.327
__Bifidobacterium 0.002 0.001 0.001 0.006
__Clostridium_sensu_stricto_1 0.001 0.001 0.000 0.001
__Dorea 0.004 0.003 0.007 0.003
__Faecalibacterium 0.119 0.110 0.100 0.106
__Lachnospira 0.011 0.010 0.005 0.012
__Lactobacillus 0.001 0.001 0.000 0.000
__Prevotella 0.000 0.000 0.000 0.000
__Roseburia 0.004 0.003 0.003 0.002
__Ruminococcus_1 0.019 0.011 0.009 0.009
__zOther 0.466 0.474 0.468 0.495

Figure to help

# genera to keep:

mphyseq2 <- mphyseq %>%
  dplyr::mutate(
    Genus = as.character(Genus),
    Genus = ifelse(Genus %in% keepGenus, Genus, "__Other")) %>%
  dplyr::group_by(SubjectID, Week) %>%
  dplyr::mutate(Total = sum(sqrt(Abundance))) %>%
  dplyr::ungroup()%>%
  dplyr::group_by(SubjectID, Week, Genus) %>%
  dplyr::mutate(GenusAbund = sum(sqrt(Abundance)),
                RelAbund = GenusAbund/Total)
  
unique(mphyseq2$Genus)
 [1] "__Bacteroides"                 "__Faecalibacterium"           
 [3] "__Other"                       "__Akkermansia"                
 [5] "__Lachnospira"                 "__Ruminococcus_1"             
 [7] "__Bifidobacterium"             "__Dorea"                      
 [9] "__Lactobacillus"               "__Roseburia"                  
[11] "__Clostridium_sensu_stricto_1" "__Prevotella"                 
mphyseq2 <- mphyseq2 %>% distinct(SubjectID, Week, Genus, .keep_all = T)

keepVar <- c("SubjectID", "Week", "Genus", "Abundance", "RelAbund")

mphyseq2 <- mphyseq2[, keepVar]

# take out "__" at start of names
mphyseq2$Genus <- substring(mphyseq2$Genus, 3)

# Create New Other category for plotting
mphyseq3 <- mphyseq2 %>% 
  dplyr::group_by(SubjectID, Week, Genus) %>%
  dplyr::summarise(RelAbund = sum(RelAbund))
other <- mphyseq3 %>% 
  dplyr::group_by(SubjectID, Week) %>% 
  dplyr::summarise(RelAbund = 1 - sum(RelAbund))

other$Genus <- "Missing"
other <- other %>% select(SubjectID, Week,  Genus, RelAbund)

mphyseq2 <- full_join(mphyseq3, other)
Joining, by = c("SubjectID", "Week", "Genus", "RelAbund")
# sort by highest average relative abundance
ph <- mphyseq2 %>%
  dplyr::group_by(Genus) %>%
  dplyr::summarize(M = mean(RelAbund, na.rm=T))

micro_ord <- ph$Genus[order(ph$M, decreasing = F)]
micro_ord <- rev(c("Missing", "Other", micro_ord[2:12]))
mphyseq2$Genus <- factor(mphyseq2$Genus, levels = micro_ord)

# fix missing data and fill-out
MIS <- mphyseq2 %>%
  group_by(SubjectID)%>%tidyr::expand(Week, Genus)

micro_data <- full_join(mphyseq2, MIS)
Joining, by = c("SubjectID", "Week", "Genus")
# add week 1 missing as 0
micro_data$RelAbund[micro_data$Week==1][is.na(micro_data$RelAbund[micro_data$Week==1])] <- 0

micro_data <- micro_data%>%
  group_by(SubjectID, Genus)%>%
  fill(RelAbund)

micro_data$Week <- as.numeric(micro_data$Week)

# create order of subjects
so <- distinct(microbiome_data$meta.dat, SubjectID, .keep_all = T)

subjectorder <- so$SubjectID[order(so$Intervention, decreasing = F)]

micro_data$SubjectID <- factor(micro_data$SubjectID,
                             levels = subjectorder,
                             labels=c(1:11))


# get right number of colors for plotting
no_cols <- length(unique(micro_data$Genus))

## Some Colors
colors_micro <- rev(c("grey90","grey90", rev(c("#00a2f2",  "#c91acb", "#7f5940", "#cc5200", "#00d957", "#40202d", "#e60099", "#006fa6", "#f29d3d", "#300059", "#39c3e6"))))

# Intervention ID variable
ids <- 1:6
micro_data$Intervention <- ifelse(micro_data$SubjectID %in% ids, "Group A", "Group B")


# make the plot
micro_plot<-ggplot(data = micro_data, aes(x=Week, y = RelAbund, fill=Genus)) +
  geom_area(stat = "identity") +
  facet_grid(.~Intervention + SubjectID, scales = "free") +
  scale_fill_manual(values = colors_micro) +
  lims(x=c(0.99, 4.01))+
  theme_classic() +
  theme(strip.text.x = element_text(angle = 0, size = 11, face = "italic"),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.text.y = element_text(size = 10),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        legend.position = "bottom",
        legend.text = element_text(size = 7),
        legend.title = element_blank(),
        panel.spacing.x=unit(0.001, "lines")) +
  guides(fill = guide_legend(reverse = F,
                             keywidth = 0.75,
                             keyheight = 0.75,
                             ncol=5)) +
  labs(y="sqrt(Relative Abundance)",
       title="Gut Microbiome, Genus Level",
       subtitle = "Subset of genera of apriori importance")
micro_plot

All Genera

mphyseq = psmelt(phylo_data)
mphyseq2 <- mphyseq %>%
  dplyr::group_by(SubjectID, Week) %>%
  dplyr::mutate(Total = sum(Abundance)) %>%
  dplyr::ungroup()%>%
  dplyr::group_by(SubjectID, Week, Genus) %>%
  dplyr::mutate(GenusAbund = sum(Abundance),
                RelAbund = GenusAbund/Total)
  
mphyseq2 <- mphyseq2 %>% distinct(SubjectID, Week, Genus, .keep_all = T)

keepVar <- c("SubjectID", "Week", "Genus", "Abundance", "RelAbund")

mphyseq2 <- mphyseq2[, keepVar]

# take out "__" at start of names
mphyseq2$Genus <- substring(mphyseq2$Genus, 3)

# Create New Other category for plotting
mphyseq3 <- mphyseq2 %>% 
  dplyr::group_by(SubjectID, Week, Genus) %>%
  dplyr::summarise(RelAbund = sum(RelAbund))
other <- mphyseq3 %>% 
  dplyr::group_by(SubjectID, Week) %>% 
  dplyr::summarise(RelAbund = 1 - sum(RelAbund))

other$Genus <- "Other"
other <- other %>% select(SubjectID, Week,  Genus, RelAbund)

mphyseq2 <- full_join(mphyseq3, other)
Joining, by = c("SubjectID", "Week", "Genus", "RelAbund")
# sort by highest average relative abundance
ph <- mphyseq2 %>%
  dplyr::group_by(Genus) %>%
  dplyr::summarize(M = mean(RelAbund, na.rm=T))

micro_ord <- ph$Genus[order(ph$M, decreasing = F)]

mphyseq2$Genus <- factor(mphyseq2$Genus, levels = rev(micro_ord))

# fix missing data and fill-out
MIS <- mphyseq2 %>%
  group_by(SubjectID)%>%tidyr::expand(Week, Genus)

micro_data <- full_join(mphyseq2, MIS)
Joining, by = c("SubjectID", "Week", "Genus")
# add week 1 missing as 0
micro_data$RelAbund[micro_data$Week==1][is.na(micro_data$RelAbund[micro_data$Week==1])] <- 0

micro_data <- micro_data%>%
  group_by(SubjectID, Genus)%>%
  fill(RelAbund)

micro_data$Week <- as.numeric(micro_data$Week)

# create order of subjects
so <- distinct(microbiome_data$meta.dat, SubjectID, .keep_all = T)

subjectorder <- so$SubjectID[order(so$Intervention, decreasing = F)]

micro_data$SubjectID <- factor(micro_data$SubjectID,
                             levels = subjectorder,
                             labels=c(1:11))


# get right number of colors for plotting
no_cols <- length(unique(micro_data$Genus))

## Some Colors
library(RColorBrewer)
color = grDevices::colors()[grep('gr(a|e)y', grDevices::colors(), invert = T)]
colors_micro <- c(sample(color, no_cols-1), "grey90")
#colors_micro <- rev(c("grey90", rev(c("#00a2f2",  "#c91acb", "#7f5940", "#cc5200", "#00d957", "#40202d", "#e60099", "#006fa6", "#f29d3d", "#300059"))))

# Intervention ID variable
ids <- 1:6
micro_data$Intervention <- ifelse(micro_data$SubjectID %in% ids, "Group A", "Group B")


# make the plot
micro_plot2<-ggplot(data = micro_data, aes(x=Week, y = RelAbund, fill=Genus)) +
  geom_area(stat = "identity") +
  facet_grid(.~Intervention + SubjectID, scales = "free") +
  scale_fill_manual(values = colors_micro) +
  lims(x=c(0.99, 4.01))+
  theme_classic() +
  theme(strip.text.x = element_text(angle = 0, size = 11, face = "italic"),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.text.y = element_text(size = 10),
        axis.title = element_text(size = 10),
        plot.title = element_text(hjust = 0.5),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        legend.position = "bottom",
        legend.text = element_text(size = 7),
        legend.title = element_blank(),
        panel.spacing.x=unit(0.001, "lines")) +
  guides(fill = guide_legend(reverse = F,
                             keywidth = 0.5,
                             keyheight = 0.5,
                             ncol=5)) +
  labs(y="Relative Abundance",
       title="Gut Microbiome, Genus Level",
       subtitle = "All generua")
micro_plot2

Another table

mphyseq2 <- mphyseq %>%
  dplyr::group_by(Week) %>%
  dplyr::mutate(Total = sum(Abundance)) %>%
  dplyr::ungroup()%>%
  dplyr::group_by(Week, Genus) %>%
  dplyr::mutate(GenusAbund = sum(Abundance),
                RelAbund = GenusAbund/Total)%>%
  dplyr::summarise(RelAbund = mean(RelAbund))

mphyseq2 <- mphyseq2 %>%
  pivot_wider(names_from = "Week",
              values_from = "RelAbund")

kable(mphyseq2, format="html", digits=3,
      caption="Relative abundance of genera by Week") %>%
  kable_styling(full_width = T) %>%
  scroll_box(width="100%", height="5in")
Relative abundance of genera by Week
Genus 1 4 8 12
___Clostridium_innocuum_group 0.000 0.000 0.000 0.000
___Eubacterium_brachy_group 0.000 0.000 0.000 0.000
___Eubacterium_coprostanoligenes_group 0.017 0.011 0.008 0.014
___Eubacterium_eligens_group 0.003 0.003 0.001 0.003
___Eubacterium_hallii_group 0.001 0.001 0.001 0.002
___Eubacterium_nodatum_group 0.000 0.001 0.000 0.001
___Eubacterium_ventriosum_group 0.001 0.001 0.000 0.000
___Eubacterium_xylanophilum_group 0.002 0.003 0.003 0.003
___Ruminococcus_gauvreauii_group 0.000 0.000 0.000 0.000
___Ruminococcus_torques_group 0.002 0.003 0.002 0.002
__Acidaminococcus 0.000 0.000 0.000 0.000
__Actinomyces 0.000 0.000 0.000 0.000
__Agathobacter 0.029 0.029 0.046 0.034
__Akkermansia 0.036 0.041 0.046 0.039
__Alistipes 0.048 0.060 0.056 0.044
__Allisonella 0.000 0.000 0.000 0.000
__Alloprevotella 0.000 0.000 0.011 0.000
__Anaerofilum 0.000 0.000 0.000 0.000
__Anaerostipes 0.003 0.003 0.002 0.002
__Anaerotruncus 0.000 0.000 0.000 0.000
__Atopobium 0.000 0.000 0.000 0.000
__Bacteroides 0.338 0.344 0.360 0.327
__Barnesiella 0.008 0.006 0.007 0.008
__Bifidobacterium 0.002 0.001 0.001 0.006
__Bilophila 0.005 0.004 0.005 0.003
__Blautia 0.010 0.008 0.008 0.007
__Butyricicoccus 0.000 0.000 0.000 0.000
__Butyricimonas 0.002 0.002 0.002 0.001
__CAG_352 0.000 0.001 0.002 0.001
__CAG_56 0.001 0.001 0.001 0.000
__Candidatus_Soleaferrea 0.000 0.000 0.000 0.000
__Candidatus_Stoquefichus 0.000 0.000 0.000 0.000
__Caproiciproducens 0.000 0.000 0.000 0.000
__Catabacter 0.000 0.000 0.000 0.000
__CHKCI002 0.000 0.000 0.000 0.000
__Christensenellaceae_R_7_group 0.020 0.025 0.020 0.034
__Clostridium_sensu_stricto_1 0.001 0.001 0.000 0.001
__Collinsella 0.000 0.000 0.000 0.000
__Coprobacter 0.000 0.000 0.000 0.000
__Coprococcus_1 0.001 0.001 0.000 0.000
__Coprococcus_2 0.001 0.000 0.000 0.001
__Defluviitaleaceae_UCG_011 0.000 0.000 0.000 0.000
__Desulfovibrio 0.006 0.004 0.007 0.005
__Dialister 0.003 0.001 0.002 0.004
__Dielma 0.000 0.000 0.000 0.000
__Dorea 0.004 0.003 0.007 0.003
__DTU089 0.000 0.000 0.000 0.000
__Eggerthella 0.000 0.000 0.000 0.000
__Enterobacter 0.000 0.000 0.001 0.000
__Enterorhabdus 0.000 0.000 0.000 0.000
__Erysipelatoclostridium 0.000 0.000 0.000 0.000
__Erysipelotrichaceae_UCG_003 0.003 0.004 0.003 0.003
__Erysipelotrichaceae_UCG_004 0.000 0.000 0.000 0.000
__Escherichia_Shigella 0.002 0.001 0.001 0.002
__Eubacterium 0.000 0.000 0.000 0.000
__Ezakiella 0.000 0.000 0.000 0.000
__Faecalibacterium 0.119 0.110 0.100 0.106
__Faecalitalea 0.001 0.002 0.000 0.002
__Family_XIII_AD3011_group 0.001 0.000 0.001 0.001
__Family_XIII_UCG_001 0.000 0.000 0.000 0.000
__Flavonifractor 0.002 0.002 0.003 0.002
__Fusicatenibacter 0.006 0.007 0.006 0.008
__g 0.015 0.037 0.034 0.042
__Gardnerella 0.000 0.000 0.000 0.000
__GCA_900066575 0.000 0.000 0.000 0.000
__GCA_900066755 0.000 0.000 0.000 0.000
__Gemella 0.000 0.000 0.000 0.000
__Gordonibacter 0.000 0.000 0.000 0.000
__Granulicatella 0.000 0.000 0.000 0.000
__Haemophilus 0.002 0.000 0.001 0.003
__Holdemanella 0.001 0.000 0.000 0.001
__Holdemania 0.000 0.001 0.001 0.001
__Howardella 0.000 0.000 0.000 0.000
__Hydrogenoanaerobacterium 0.000 0.000 0.000 0.000
__Intestinibacter 0.000 0.001 0.001 0.000
__Lachnoclostridium 0.011 0.016 0.013 0.015
__Lachnospira 0.011 0.010 0.005 0.012
__Lachnospiraceae_AC2044_group 0.000 0.000 0.000 0.000
__Lachnospiraceae_FCS020_group 0.000 0.000 0.000 0.000
__Lachnospiraceae_NK4A136_group 0.015 0.011 0.006 0.017
__Lachnospiraceae_NK4B4_group 0.000 0.000 0.000 0.000
__Lachnospiraceae_UCG_001 0.003 0.005 0.003 0.002
__Lachnospiraceae_UCG_002 0.000 0.000 0.000 0.000
__Lachnospiraceae_UCG_004 0.004 0.005 0.003 0.004
__Lachnospiraceae_UCG_008 0.012 0.009 0.013 0.008
__Lachnospiraceae_UCG_010 0.002 0.002 0.001 0.001
__Lactobacillus 0.001 0.001 0.000 0.000
__Lactococcus 0.000 0.000 0.000 0.000
__Lautropia 0.000 0.000 0.000 0.000
__Leuconostoc 0.000 0.000 0.000 0.000
__Marvinbryantia 0.000 0.000 0.000 0.000
__Megamonas 0.001 0.000 0.000 0.004
__Megasphaera 0.000 0.001 0.000 0.001
__Merdibacter 0.000 0.000 0.000 0.000
__Methanobrevibacter 0.000 0.000 0.000 0.000
__Methanosphaera 0.000 0.000 0.000 0.000
__Moryella 0.000 0.000 0.000 0.000
__Murdochiella 0.000 0.000 0.000 0.000
__Negativibacillus 0.000 0.000 0.000 0.000
__Neisseria 0.000 0.000 0.000 0.000
__Odoribacter 0.004 0.005 0.007 0.004
__Oribacterium 0.000 0.000 0.000 0.000
__Oscillibacter 0.002 0.003 0.002 0.003
__Oscillospira 0.002 0.001 0.002 0.002
__Oxalobacter 0.000 0.000 0.000 0.000
__Parabacteroides 0.019 0.023 0.021 0.026
__Paraprevotella 0.012 0.016 0.003 0.006
__Parasutterella 0.011 0.010 0.017 0.009
__Parvibacter 0.000 0.000 0.000 0.000
__Peptococcus 0.000 0.000 0.000 0.000
__Peptoniphilus 0.000 0.000 0.000 0.000
__Peptostreptococcus 0.000 0.000 0.000 0.000
__Phascolarctobacterium 0.003 0.002 0.005 0.005
__Phocea 0.000 0.000 0.000 0.000
__Porphyromonas 0.000 0.000 0.000 0.000
__Prevotella 0.000 0.000 0.000 0.000
__Prevotella_2 0.029 0.014 0.010 0.020
__Prevotella_6 0.000 0.000 0.000 0.000
__Pseudomonas 0.000 0.000 0.000 0.000
__Rikenellaceae_RC9_gut_group 0.000 0.000 0.000 0.000
__Romboutsia 0.001 0.000 0.000 0.001
__Roseburia 0.004 0.003 0.003 0.002
__Rothia 0.000 0.000 0.000 0.000
__Ruminiclostridium 0.000 0.000 0.000 0.000
__Ruminiclostridium_1 0.000 0.000 0.001 0.000
__Ruminiclostridium_5 0.001 0.002 0.003 0.009
__Ruminiclostridium_6 0.015 0.013 0.008 0.014
__Ruminiclostridium_9 0.000 0.000 0.001 0.001
__Ruminococcaceae_NK4A214_group 0.003 0.004 0.005 0.003
__Ruminococcaceae_UCG_002 0.027 0.023 0.028 0.027
__Ruminococcaceae_UCG_003 0.003 0.005 0.004 0.003
__Ruminococcaceae_UCG_005 0.013 0.005 0.009 0.007
__Ruminococcaceae_UCG_009 0.000 0.000 0.000 0.000
__Ruminococcaceae_UCG_010 0.003 0.003 0.002 0.003
__Ruminococcaceae_UCG_011 0.000 0.000 0.000 0.000
__Ruminococcaceae_UCG_013 0.001 0.002 0.002 0.002
__Ruminococcaceae_UCG_014 0.008 0.012 0.005 0.009
__Ruminococcus_1 0.019 0.011 0.009 0.009
__Ruminococcus_2 0.004 0.006 0.006 0.004
__Sanguibacteroides 0.000 0.000 0.000 0.000
__Sellimonas 0.000 0.000 0.000 0.000
__Staphylococcus 0.000 0.000 0.000 0.000
__Streptococcus 0.001 0.000 0.002 0.001
__Subdoligranulum 0.025 0.015 0.011 0.014
__Sutterella 0.011 0.013 0.006 0.007
__Turicella 0.000 0.000 0.000 0.000
__Turicibacter 0.000 0.000 0.000 0.000
__Tyzzerella 0.000 0.000 0.001 0.002
__Tyzzerella_3 0.001 0.000 0.000 0.000
__Tyzzerella_4 0.000 0.000 0.001 0.001
__UBA1819 0.002 0.002 0.004 0.003
__uncultured 0.015 0.017 0.017 0.015
__Veillonella 0.000 0.000 0.002 0.000
__Victivallis 0.000 0.001 0.001 0.001
__Weissella 0.000 0.000 0.000 0.000

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] RColorBrewer_1.1-2 cowplot_1.0.0      microbiome_1.8.0   car_3.0-8         
 [5] carData_3.0-4      gvlma_1.0.0.3      patchwork_1.0.0    viridis_0.5.1     
 [9] viridisLite_0.3.0  gridExtra_2.3      xtable_1.8-4       kableExtra_1.1.0  
[13] plyr_1.8.6         data.table_1.12.8  readxl_1.3.1       forcats_0.5.0     
[17] stringr_1.4.0      dplyr_0.8.5        purrr_0.3.4        readr_1.3.1       
[21] tidyr_1.1.0        tibble_3.0.1       ggplot2_3.3.0      tidyverse_1.3.0   
[25] lmerTest_3.1-2     lme4_1.1-23        Matrix_1.2-18      vegan_2.5-6       
[29] lattice_0.20-38    permute_0.9-5      phyloseq_1.30.0   

loaded via a namespace (and not attached):
 [1] Rtsne_0.15          minqa_1.2.4         colorspace_1.4-1   
 [4] rio_0.5.16          ellipsis_0.3.1      rprojroot_1.3-2    
 [7] XVector_0.26.0      fs_1.4.1            rstudioapi_0.11    
[10] farver_2.0.3        fansi_0.4.1         lubridate_1.7.8    
[13] xml2_1.3.2          codetools_0.2-16    splines_3.6.3      
[16] knitr_1.28          ade4_1.7-15         jsonlite_1.6.1     
[19] workflowr_1.6.2     nloptr_1.2.2.1      broom_0.5.6        
[22] cluster_2.1.0       dbplyr_1.4.4        BiocManager_1.30.10
[25] compiler_3.6.3      httr_1.4.1          backports_1.1.7    
[28] assertthat_0.2.1    cli_2.0.2           later_1.0.0        
[31] htmltools_0.4.0     tools_3.6.3         igraph_1.2.5       
[34] gtable_0.3.0        glue_1.4.1          reshape2_1.4.4     
[37] Rcpp_1.0.4.6        Biobase_2.46.0      cellranger_1.1.0   
[40] vctrs_0.3.0         Biostrings_2.54.0   multtest_2.42.0    
[43] ape_5.3             nlme_3.1-144        iterators_1.0.12   
[46] xfun_0.14           openxlsx_4.1.5      rvest_0.3.5        
[49] lifecycle_0.2.0     statmod_1.4.34      zlibbioc_1.32.0    
[52] MASS_7.3-51.5       scales_1.1.1        hms_0.5.3          
[55] promises_1.1.0      parallel_3.6.3      biomformat_1.14.0  
[58] rhdf5_2.30.1        curl_4.3            yaml_2.2.1         
[61] stringi_1.4.6       highr_0.8           S4Vectors_0.24.4   
[64] foreach_1.5.0       BiocGenerics_0.32.0 zip_2.0.4          
[67] boot_1.3-24         rlang_0.4.6         pkgconfig_2.0.3    
[70] evaluate_0.14       Rhdf5lib_1.8.0      labeling_0.3       
[73] tidyselect_1.1.0    magrittr_1.5        R6_2.4.1           
[76] IRanges_2.20.2      generics_0.0.2      DBI_1.1.0          
[79] foreign_0.8-75      pillar_1.4.4        haven_2.3.0        
[82] withr_2.2.0         mgcv_1.8-31         abind_1.4-5        
[85] survival_3.1-8      modelr_0.1.8        crayon_1.3.4       
[88] rmarkdown_2.1       grid_3.6.3          blob_1.2.1         
[91] git2r_0.27.1        reprex_0.3.0        digest_0.6.25      
[94] webshot_0.5.2       httpuv_1.5.2        numDeriv_2016.8-1.1
[97] stats4_3.6.3        munsell_0.5.0