Last updated: 2021-01-14

Checks: 7 0

Knit directory: esoph-micro-cancer-workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e6b4c7f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/data-check-for-RNAscope.Rmd) and HTML (docs/data-check-for-RNAscope.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e6b4c7f noah-padgett 2021-01-14 meeting update
html e6b4c7f noah-padgett 2021-01-14 meeting update

The goal here is to double check that there is indeed no microbiome data for those samples that say N/A. To help with this, I recoded the N/A values from the excel sheet to -999 so that R’s internal NA system doesn’t confuse us.

Cleaned data

# melt data down for use
dat.16s <- psmelt(phylo.data.nci.umd)

# subset to fuso. nuc. only
# Streptococcus sanguinis 
# Campylobacter concisus
# Prevotella spp.

dat.16s <- filter(
  dat.16s,
  OTU %in% c(
    "Fusobacterium_nucleatum",
    unique(dat.16s$OTU[dat.16s$OTU %like% "Streptococcus_"]),
    unique(dat.16s$OTU[dat.16s$OTU %like% "Campylobacter_"]),
    "Prevotella_melaninogenica")
)
# rename bacteria
dat.16s$OTU <- factor(
  dat.16s$OTU,
  levels = c(
    "Fusobacterium_nucleatum",
    "Streptococcus_dentisani:Streptococcus_infantis:Streptococcus_mitis:Streptococcus_oligofermentans:Streptococcus_oralis:Streptococcus_pneumoniae:Streptococcus_pseudopneumoniae:Streptococcus_sanguinis",
    "Campylobacter_rectus:Campylobacter_showae",
    "Prevotella_melaninogenica"
  ),
  labels = c(
    "Fusobacterium_nucleatum",
    "Streptococcus_spp.",
    "Campylobacter_concisus",
    "Prevotella_melaninogenica"
  )
)

# make tumor vs normal variable
dat.16s$tumor.cat <- factor(dat.16s$tissue, levels=c("BO", "N", "T"), labels = c("Non-Tumor", "Non-Tumor", "Tumor"))

# relabel as (0/1) for analysis
dat.16s$tumor <- as.numeric(factor(dat.16s$tissue, levels=c("BO", "N", "T"), labels = c("Non-Tumor", "Non-Tumor", "Tumor"))) - 1

# presence- absence
dat.16s$pres <- ifelse(dat.16s$Abundance > 0, 1, 0)
dat.16s$pres[is.na(dat.16s$pres)] <- 0

# make wide 
dat.16s2 <- dat.16s %>%
  pivot_wider(
    id_cols = c(Sample, accession.number, tissue, tumor.cat),
    names_from = OTU,
    values_from = Abundance
  ) %>%
  mutate(
    Accession = accession.number
  )

dat.16s2 <- dat.16s2[, c(1,2,3,6)]
colnames(dat.16s2) <- c("Sample", "Accession", "Tissue", "Fusobacterium_nucleatum_biomfile")

# data from scope
dat.scope <- readxl::read_xlsx("data/EAC tumors for RNAscope.xlsx", sheet = 2)
dat.scope$Fusobacterium_nucleatum[is.na(dat.scope$Fusobacterium_nucleatum)] <- -999
dat.scope <- dat.scope[, c(1,2,16, 19)]
colnames(dat.scope) <- c("Accession", "Tissue", "Fusobacterium_nucleatum_RNAscopefile", "BLACKLINE")

# merge the two files together to see (non)overlap of -999 to NA
dat.16s3 <- full_join(dat.16s2, dat.scope, keep=T)
Joining, by = c("Accession", "Tissue")
dat.16s3 %>%
  arrange(-desc(Accession.x)) %>%
  kable(format="html", digits=2)%>%
  kable_styling(full_width = T)%>%
  scroll_box(width = "100%", height = "500px")
Sample Accession.x Tissue.x Fusobacterium_nucleatum_biomfile Accession.y Tissue.y Fusobacterium_nucleatum_RNAscopefile BLACKLINE
18.S35.Jun172016 10147 N 0 NA NA NA NA
7.A08.S8.Jul202017 10153 N 0 NA NA NA NA
17.S14.Jun172016 10215 N 0 NA NA NA NA
4.S13.Jun172016 10215 T 0 NA NA NA NA
11.B08.S20.Jun232016 10245 N 0 NA NA NA NA
5.S4.Jun172016 11049 N 1 NA NA NA NA
2.S16.Jun172016 11049 T 2 NA NA NA NA
19.S25.Jun172016 11229 N 2 NA NA NA NA
8.S8.Jun172016 11267 T 0 11267 T 0.0 Above
16.S38.Jun172016 11271 T 190 11271 T 37.2 Above
1.S37.Jun172016 11271 N 62 NA NA NA NA
13.S20.Jun172016 11362 N 0 NA NA NA NA
20.A09.S9.Jun232016 11394 N 0 NA NA NA NA
6.A10.S10.Jun232016 11394 T 0 NA NA NA NA
26.H04.S88.Jun232016 11639 N 0 NA NA NA NA
28.S87.Jun172016 11677 N 0 NA NA NA NA
42.A04.S4.Jul202017 11738 T 4 NA NA NA NA
35.A03.S3.Jul202017 11738 N 0 NA NA NA NA
43.S49.Jun172016 11743 T 0 NA NA NA NA
29.S31.Jun172016 11816 N 0 NA NA NA NA
37.S32.Jun172016 11816 T 0 NA NA NA NA
38.C09.S33.Jun232016 11833 T 28 NA NA NA NA
34.C10.S34.Jun232016 11833 N 0 NA NA NA NA
46.C04.S28.Jul202017 11839 T 37 NA NA NA NA
25.C03.S27.Jul202017 11839 N 4 NA NA NA NA
48.S43.Jun172016 11949 T 0 11949 T 0.0 Above
47.S44.Jun172016 11949 N 0 NA NA NA NA
239.D09.S45.Jun232016 11952 BO 0 11952 BO 0.0 Above
49.S47.Jun172016 11987 N 0 NA NA NA NA
23.S75.Jun172016 12023 T 5 NA NA NA NA
22.C07.S31.Jun232016 12262 N 1 NA NA NA NA
31.C08.S32.Jun232016 12262 T 5 NA NA NA NA
50.S56.Jun172016 12291 N 0 NA NA NA NA
51.S55.Jun172016 12291 T 0 12291 T -999.0 Below
51.S55.Jun172016 12291 T 0 12291 T -999.0 Below
53.E09.S57.Jun232016 12306 T 0 12306 T 0.0 Above
52.E10.S58.Jun232016 12306 N 0 NA NA NA NA
54.G11.S83.Jul202017 12328 N 0 NA NA NA NA
55.E03.S51.Jul202017 12460 T 42 NA NA NA NA
57.S68.Jun172016 12631 N 0 NA NA NA NA
58.S67.Jun172016 12631 T 2 NA NA NA NA
59.S72.Jun172016 12637 N 1 NA NA NA NA
27.F09.S69.Jun232016 12672 N 53 NA NA NA NA
32.S52.Jun172016 12672 T 0 12672 T 0.0 Above
60.C10.S34.Jul202017 12705 N 0 NA NA NA NA
62.G10.S82.Jun232016 12733 T 1 12733 T -999.0 Below
61.G09.S81.Jun232016 12733 N 0 NA NA NA NA
36.F04.S64.Jul202017 12758 T 4 NA NA NA NA
33.F03.S63.Jul202017 12758 N 0 NA NA NA NA
226.S50.Jun172016 12767 BO 0 12767 BO 0.0 Above
229.S79.Jun172016 12779 T 0 NA NA NA NA
63.D03.S39.Jul202017 12779 N 0 NA NA NA NA
66.G04.S76.Jul202017 12841 T 0 12841 T -999.0 Below
67.D10.S46.Jul202017 12897 N 1 NA NA NA NA
24.S92.Jun172016 12936 T 30 NA NA NA NA
68.S91.Jun172016 12936 N 0 NA NA NA NA
71.H10.S94.Jun232016 12944 T 330 NA NA NA NA
70.H09.S93.Jun232016 12944 N 0 NA NA NA NA
74.H03.S87.Jul202017 13008 T 236 13008 T 32.2 Above
73.H04.S88.Jul202017 13008 N 224 NA NA NA NA
77.S10.Jun172016 13103 N 2 NA NA NA NA
79.S3.Jun172016 13128 T 0 NA NA NA NA
81.A02.S2.Jun232016 13202 T 15 NA NA NA NA
80.A01.S1.Jun232016 13202 N 1 NA NA NA NA
83.A06.S6.Jul202017 13211 T 0 NA NA NA NA
82.A05.S5.Jul202017 13211 N 0 NA NA NA NA
84.S22.Jun172016 13220 N 0 NA NA NA NA
86.B02.S14.Jun232016 13266 N 4 NA NA NA NA
87.B01.S13.Jun232016 13266 T 21 NA NA NA NA
88.B05.S17.Jul202017 13270 N 0 NA NA NA NA
89.B06.S18.Jul202017 13270 T 0 13270 T 0.0 Above
90.S33.Jun172016 13318 N 0 NA NA NA NA
95.C06.S30.Jul202017 13367 T 0 NA NA NA NA
97.S45.Jun172016 13406 T 80 NA NA NA NA
96.S46.Jun172016 13406 N 3 NA NA NA NA
99.D01.S37.Jun232016 13430 T 0 NA NA NA NA
98.D02.S38.Jun232016 13430 N 0 NA NA NA NA
100.D06.S42.Jul202017 13460 N 0 NA NA NA NA
102.S57.Jun172016 13462 N 1 NA NA NA NA
103.S58.Jun172016 13462 T 19 NA NA NA NA
104.S23.Jun172016 13523 N 12 NA NA NA NA
106.E02.S50.Jun232016 13553 T 0 13553 T 0.0 Above
106.E02.S50.Jun232016 13553 T 0 13553 T 0.0 Below
108.E06.S54.Jul202017 13622 BO 6 13622 BO 0.0 Above
110.S69.Jun172016 13658 T 0 NA NA NA NA
109.S70.Jun172016 13658 N 1 NA NA NA NA
112.F02.S62.Jun232016 13702 N 24 NA NA NA NA
113.F01.S61.Jun232016 13702 T 6 13702 T 0.0 Above
118.S82.Jun172016 13850 T 0 NA NA NA NA
234.C07.S31.Jul202017 13922 BO 4 13922 BO 0.8 Above
119.G01.S73.Jun232016 13927 N 0 NA NA NA NA
121.G05.S77.Jul202017 13987 N 0 NA NA NA NA
124.S93.Jun172016 14033 T 38 NA NA NA NA
125.H06.S90.Jul202017 14066 N 0 NA NA NA NA
128.S5.Jun172016 14081 T 11 NA NA NA NA
127.S6.Jun172016 14081 N 22 NA NA NA NA
130.A02.S2.Jul202017 14130 T 9 NA NA NA NA
129.A01.S1.Jul202017 14130 N 0 NA NA NA NA
131.S62.Jun172016 14146 T 3 NA NA NA NA
134.F11.S71.Jun172016 14378 T 0 NA NA NA NA
135.B06.S18.Jun232016 14403 N 92 NA NA NA NA
137.F09.S69.Jul202017 14423 N 0 NA NA NA NA
139.F07.S67.Jun232016 14466 N 10 NA NA NA NA
140.B02.S14.Jul202017 14495 N 1 NA NA NA NA
142.E08.S56.Jul202017 14510 N 0 NA NA NA NA
143.G08.S80.Jul202017 14523 N 0 NA NA NA NA
146.S29.Jun172016 14717 N 1 NA NA NA NA
148.S30.Jun172016 14717 T 0 NA NA NA NA
145.D09.S45.Jul202017 14751 T 0 NA NA NA NA
150.C06.S30.Jun232016 14827 T 3 NA NA NA NA
149.C05.S29.Jun232016 14827 N 0 NA NA NA NA
151.E03.S51.Jun232016 15180 N 0 NA NA NA NA
152.H07.S91.Jun232016 15232 T 0 NA NA NA NA
154.C02.S26.Jul202017 15239 T 4 15239 T 0.8 Above
155.C09.S33.Jul202017 15501 T 1 NA NA NA NA
114.S41.Jun172016 15707 N 72 NA NA NA NA
156.S42.Jun172016 15707 T 168 NA NA NA NA
157.D05.S41.Jun232016 15725 N 2 NA NA NA NA
158.D06.S42.Jun232016 15725 T 70 NA NA NA NA
159.B10.S22.Jul202017 15752 T 6 NA NA NA NA
160.E04.S52.Jun232016 15770 N 0 NA NA NA NA
162.G04.S76.Jun232016 15876 N 1 NA NA NA NA
165.S54.Jun172016 16210 T 0 NA NA NA NA
167.E05.S53.Jun232016 16243 T 19 16243 T 0.0 Below
166.E06.S54.Jun232016 16243 N 1 NA NA NA NA
168.S59.Jun172016 16418 N 3 NA NA NA NA
170.E02.S50.Jul202017 16549 N 0 NA NA NA NA
173.S66.Jun172016 16590 T 97 NA NA NA NA
172.S65.Jun172016 16590 N 11 NA NA NA NA
174.S76.Jun172016 16592 N 61 NA NA NA NA
175.S88.Jun172016 16592 T 39 16592 T 7.6 Above
175.S88.Jun172016 16592 T 39 16592 T 7.6 Below
176.H07.S91.Jul202017 16608 N 0 NA NA NA NA
179.F01.S61.Jul202017 16736 T 12 NA NA NA NA
178.F02.S62.Jul202017 16736 N 0 NA NA NA NA
181.D02.S38.Jul202017 16745 T 0 NA NA NA NA
227.S74.Jun172016 16745 N 1 NA NA NA NA
184.S61.Jun172016 16981 N 5 NA NA NA NA
185.G08.S80.Jun232016 17002 N 0 NA NA NA NA
186.S77.Jun172016 17206 N 21 NA NA NA NA
187.S78.Jun172016 17206 T 0 17206 T 0.0 Below
189.G05.S77.Jun232016 17223 T 0 17223 T -999.0 Below
188.G06.S78.Jun232016 17223 N 1 NA NA NA NA
191.G02.S74.Jul202017 17285 T 4 NA NA NA NA
190.G01.S73.Jul202017 17285 N 0 NA NA NA NA
194.H05.S89.Jun232016 17304 N 0 NA NA NA NA
195.H06.S90.Jun232016 17304 T 0 17304 T 0.0 Above
196.D08.S44.Jun232016 17353 N 0 NA NA NA NA
197.G07.S79.Jul202017 17435 N 0 NA NA NA NA
198.F03.S63.Jun232016 17493 N 0 NA NA NA NA
199.A11.S11.Jun232016 17512 N 11 NA NA NA NA
200.S96.Jun172016 17525 N 0 NA NA NA NA
201.H02.S86.Jun242016 17525 T 0 NA NA NA NA
202.D07.S43.Jul202017 17606 N 0 NA NA NA NA
205.S2.Jun172016 17683 T 385 17683 T 0.0 Below
204.S1.Jun172016 17683 N 159 NA NA NA NA
206.S51.Jun172016 17698 N 0 NA NA NA NA
233.G07.S79.Jun232016 17799 BO 5 17799 BO 0.4 Above
208.D03.S39.Jun232016 17842 N 1 NA NA NA NA
211.A07.S7.Jun232016 17918 N 0 NA NA NA NA
212.A08.S8.Jun232016 17918 T 0 17918 T 0.0 Above
NA NA NA NA 13732 BO -999.0 Above
NA NA NA NA 16555 BO -999.0 Above
NA NA NA NA 16976 BO -999.0 Above
NA NA NA NA 11802 BO -999.0 Above
NA NA NA NA 14130 BO -999.0 Above
NA NA NA NA 11267 NT -999.0 Above
NA NA NA NA 11271 NT -999.0 Above
NA NA NA NA 11455 NT -999.0 Above
NA NA NA NA 11455 T -999.0 Above
NA NA NA NA 11949 NT -999.0 Above
NA NA NA NA 12306 NT -999.0 Above
NA NA NA NA 12672 NT -999.0 Above
NA NA NA NA 13008 NT -999.0 Above
NA NA NA NA 13103 NT -999.0 Above
NA NA NA NA 13103 T -999.0 Above
NA NA NA NA 13270 NT -999.0 Above
NA NA NA NA 13318 NT -999.0 Above
NA NA NA NA 13318 T -999.0 Above
NA NA NA NA 13553 NT -999.0 Above
NA NA NA NA 13702 NT -999.0 Above
NA NA NA NA 13927 NT -999.0 Above
NA NA NA NA 13927 T -999.0 Above
NA NA NA NA 14719 NT -999.0 Above
NA NA NA NA 14719 T -999.0 Above
NA NA NA NA 15180 NT -999.0 Above
NA NA NA NA 15180 T -999.0 Above
NA NA NA NA 15239 NT -999.0 Above
NA NA NA NA 16034 NT -999.0 Above
NA NA NA NA 16034 T -999.0 Above
NA NA NA NA 16592 NT -999.0 Above
NA NA NA NA 17304 NT -999.0 Above
NA NA NA NA 17918 NT -999.0 Above
NA NA NA NA 13553 NT -999.0 Below
NA NA NA NA 12733 NT -999.0 Below
NA NA NA NA 12291 NT -999.0 Below
NA NA NA NA 12291 NT -999.0 Below
NA NA NA NA 12841 NT -999.0 Below
NA NA NA NA 12997 NT -999.0 Below
NA NA NA NA 12997 T -999.0 Below
NA NA NA NA 13103 NT -999.0 Below
NA NA NA NA 13103 T -999.0 Below
NA NA NA NA 16243 NT 0.2 Below
NA NA NA NA 16592 NT 0.0 Below
NA NA NA NA 16642 NT 0.0 Below
NA NA NA NA 16642 T 76.6 Below
NA NA NA NA 17206 NT -999.0 Below
NA NA NA NA 17223 NT 0.0 Below
NA NA NA NA 17683 NT -999.0 Below

Look at RAW data

This is to double check how the .biom file was in read. It appears as nearly all NA values from the

meta.data <- read_excel(
  "data/NCI-UMD/UMD Esoph dataset from EB_2019_08_06_AV edits.xlsx", 
  sheet = "FOR STATA"
)
# subset to unique "sample ids
meta.data <- meta.data %>% distinct(`Sample ID`, .keep_all = T)
#read_xlsx("data/NCI-UMD/NCI_UMD_metadata_2020_09_17.xlsx")
# change "_" in sampleid to "." to match .biome file
meta.data$sampleid <- meta.data$`Sample ID`
meta.data$ID <- stringr::str_replace_all(meta.data$sampleid, "_", ".")

# get microbiome data
biom.file  <- import_biom("data/NCI-UMD/otu_table_even500.biom")
tree.file  <- read_tree("data/NCI-UMD/reps_even500.tre")

# create phyloseq object
meta <- sample_data(meta.data)
sample_names(meta) <- meta.data$ID

# update otu table to include "zeros" for non-found samples
phylo.data0 <- merge_phyloseq(biom.file, tree.file, meta)
dat.16s.raw <- psmelt(phylo.data0)
dat.16s.raw <- filter(dat.16s.raw, OTU == "Fusobacterium_nucleatum")
dat.16s.raw <- dat.16s.raw %>% select(Sample, accession.number, tissue,  Abundance)
colnames(dat.16s.raw) <- c("Sample", "Accession", "Tissue", "Fusobacterium_nucleatum_biomfile")

# scope data
dat.scope <- readxl::read_xlsx("data/EAC tumors for RNAscope.xlsx", sheet = 2)
dat.scope$Fusobacterium_nucleatum[is.na(dat.scope$Fusobacterium_nucleatum)] <- -999
dat.scope <- dat.scope[, c(1,2,16, 19)]
colnames(dat.scope) <- c("Accession", "Tissue", "Fusobacterium_nucleatum_RNAscopefile", "BLACKLINE")

# merge with the "scope data"

dat.16s.raw2 <- full_join(dat.16s.raw, dat.scope, keep = T)
Joining, by = c("Accession", "Tissue")
dat.16s.raw2 %>%
  arrange(-desc(Accession.x)) %>%
  kable(format="html", digits=2)%>%
  kable_styling(full_width = T)%>%
  scroll_box(width = "100%", height = "500px")
Sample Accession.x Tissue.x Fusobacterium_nucleatum_biomfile Accession.y Tissue.y Fusobacterium_nucleatum_RNAscopefile BLACKLINE
18.S35.Jun172016 10147 N 0 NA NA NA NA
7.A08.S8.Jul202017 10153 N 0 NA NA NA NA
4.S13.Jun172016 10215 T 0 NA NA NA NA
17.S14.Jun172016 10215 N 0 NA NA NA NA
11.B08.S20.Jun232016 10245 N 0 NA NA NA NA
2.S16.Jun172016 11049 T 2 NA NA NA NA
5.S4.Jun172016 11049 N 0 NA NA NA NA
19.S25.Jun172016 11229 N 0 NA NA NA NA
8.S8.Jun172016 11267 T 0 11267 T 0.0 Above
16.S38.Jun172016 11271 T 186 11271 T 37.2 Above
1.S37.Jun172016 11271 N 41 NA NA NA NA
13.S20.Jun172016 11362 N 0 NA NA NA NA
20.A09.S9.Jun232016 11394 N 0 NA NA NA NA
6.A10.S10.Jun232016 11394 T 0 NA NA NA NA
26.H04.S88.Jun232016 11639 N 0 NA NA NA NA
28.S87.Jun172016 11677 N 0 NA NA NA NA
42.A04.S4.Jul202017 11738 T 1 NA NA NA NA
35.A03.S3.Jul202017 11738 N 0 NA NA NA NA
43.S49.Jun172016 11743 T 0 NA NA NA NA
29.S31.Jun172016 11816 N 0 NA NA NA NA
37.S32.Jun172016 11816 T 0 NA NA NA NA
38.C09.S33.Jun232016 11833 T 12 NA NA NA NA
34.C10.S34.Jun232016 11833 N 0 NA NA NA NA
25.C03.S27.Jul202017 11839 N 4 NA NA NA NA
46.C04.S28.Jul202017 11839 T 0 NA NA NA NA
48.S43.Jun172016 11949 T 0 11949 T 0.0 Above
47.S44.Jun172016 11949 N 0 NA NA NA NA
239.D09.S45.Jun232016 11952 BO 0 11952 BO 0.0 Above
49.S47.Jun172016 11987 N 0 NA NA NA NA
23.S75.Jun172016 12023 T 4 NA NA NA NA
22.C07.S31.Jun232016 12262 N 0 NA NA NA NA
31.C08.S32.Jun232016 12262 T 0 NA NA NA NA
50.S56.Jun172016 12291 N 0 NA NA NA NA
51.S55.Jun172016 12291 T 0 12291 T -999.0 Below
51.S55.Jun172016 12291 T 0 12291 T -999.0 Below
53.E09.S57.Jun232016 12306 T 0 12306 T 0.0 Above
52.E10.S58.Jun232016 12306 N 0 NA NA NA NA
54.G11.S83.Jul202017 12328 N 0 NA NA NA NA
55.E03.S51.Jul202017 12460 T 0 NA NA NA NA
57.S68.Jun172016 12631 N 0 NA NA NA NA
58.S67.Jun172016 12631 T 0 NA NA NA NA
59.S72.Jun172016 12637 N 1 NA NA NA NA
32.S52.Jun172016 12672 T 0 12672 T 0.0 Above
27.F09.S69.Jun232016 12672 N 0 NA NA NA NA
60.C10.S34.Jul202017 12705 N 0 NA NA NA NA
62.G10.S82.Jun232016 12733 T 1 12733 T -999.0 Below
61.G09.S81.Jun232016 12733 N 0 NA NA NA NA
36.F04.S64.Jul202017 12758 T 1 NA NA NA NA
33.F03.S63.Jul202017 12758 N 0 NA NA NA NA
226.S50.Jun172016 12767 BO 0 12767 BO 0.0 Above
229.S79.Jun172016 12779 T 0 NA NA NA NA
63.D03.S39.Jul202017 12779 N 0 NA NA NA NA
66.G04.S76.Jul202017 12841 T 0 12841 T -999.0 Below
67.D10.S46.Jul202017 12897 N 1 NA NA NA NA
24.S92.Jun172016 12936 T 1 NA NA NA NA
68.S91.Jun172016 12936 N 0 NA NA NA NA
71.H10.S94.Jun232016 12944 T 324 NA NA NA NA
70.H09.S93.Jun232016 12944 N 0 NA NA NA NA
74.H03.S87.Jul202017 13008 T 161 13008 T 32.2 Above
73.H04.S88.Jul202017 13008 N 149 NA NA NA NA
77.S10.Jun172016 13103 N 2 NA NA NA NA
79.S3.Jun172016 13128 T 0 NA NA NA NA
81.A02.S2.Jun232016 13202 T 14 NA NA NA NA
80.A01.S1.Jun232016 13202 N 0 NA NA NA NA
82.A05.S5.Jul202017 13211 N 0 NA NA NA NA
83.A06.S6.Jul202017 13211 T 0 NA NA NA NA
84.S22.Jun172016 13220 N 0 NA NA NA NA
87.B01.S13.Jun232016 13266 T 20 NA NA NA NA
86.B02.S14.Jun232016 13266 N 4 NA NA NA NA
88.B05.S17.Jul202017 13270 N 0 NA NA NA NA
89.B06.S18.Jul202017 13270 T 0 13270 T 0.0 Above
90.S33.Jun172016 13318 N 0 NA NA NA NA
95.C06.S30.Jul202017 13367 T 0 NA NA NA NA
96.S46.Jun172016 13406 N 3 NA NA NA NA
97.S45.Jun172016 13406 T 0 NA NA NA NA
99.D01.S37.Jun232016 13430 T 0 NA NA NA NA
98.D02.S38.Jun232016 13430 N 0 NA NA NA NA
100.D06.S42.Jul202017 13460 N 0 NA NA NA NA
103.S58.Jun172016 13462 T 19 NA NA NA NA
102.S57.Jun172016 13462 N 1 NA NA NA NA
104.S23.Jun172016 13523 N 4 NA NA NA NA
106.E02.S50.Jun232016 13553 T 0 13553 T 0.0 Above
106.E02.S50.Jun232016 13553 T 0 13553 T 0.0 Below
108.E06.S54.Jul202017 13622 BO 0 13622 BO 0.0 Above
110.S69.Jun172016 13658 T 0 NA NA NA NA
109.S70.Jun172016 13658 N 0 NA NA NA NA
113.F01.S61.Jun232016 13702 T 0 13702 T 0.0 Above
112.F02.S62.Jun232016 13702 N 0 NA NA NA NA
118.S82.Jun172016 13850 T 0 NA NA NA NA
234.C07.S31.Jul202017 13922 BO 4 13922 BO 0.8 Above
119.G01.S73.Jun232016 13927 N 0 NA NA NA NA
121.G05.S77.Jul202017 13987 N 0 NA NA NA NA
124.S93.Jun172016 14033 T 38 NA NA NA NA
125.H06.S90.Jul202017 14066 N 0 NA NA NA NA
127.S6.Jun172016 14081 N 1 NA NA NA NA
128.S5.Jun172016 14081 T 0 NA NA NA NA
130.A02.S2.Jul202017 14130 T 1 NA NA NA NA
129.A01.S1.Jul202017 14130 N 0 NA NA NA NA
131.S62.Jun172016 14146 T 1 NA NA NA NA
134.F11.S71.Jun172016 14378 T 0 NA NA NA NA
135.B06.S18.Jun232016 14403 N 0 NA NA NA NA
137.F09.S69.Jul202017 14423 N 0 NA NA NA NA
139.F07.S67.Jun232016 14466 N 0 NA NA NA NA
140.B02.S14.Jul202017 14495 N 1 NA NA NA NA
142.E08.S56.Jul202017 14510 N 0 NA NA NA NA
143.G08.S80.Jul202017 14523 N 0 NA NA NA NA
146.S29.Jun172016 14717 N 1 NA NA NA NA
148.S30.Jun172016 14717 T 0 NA NA NA NA
145.D09.S45.Jul202017 14751 T 0 NA NA NA NA
150.C06.S30.Jun232016 14827 T 3 NA NA NA NA
149.C05.S29.Jun232016 14827 N 0 NA NA NA NA
151.E03.S51.Jun232016 15180 N 0 NA NA NA NA
152.H07.S91.Jun232016 15232 T 0 NA NA NA NA
154.C02.S26.Jul202017 15239 T 4 15239 T 0.8 Above
155.C09.S33.Jul202017 15501 T 0 NA NA NA NA
156.S42.Jun172016 15707 T 133 NA NA NA NA
114.S41.Jun172016 15707 N 54 NA NA NA NA
158.D06.S42.Jun232016 15725 T 5 NA NA NA NA
157.D05.S41.Jun232016 15725 N 0 NA NA NA NA
159.B10.S22.Jul202017 15752 T 2 NA NA NA NA
160.E04.S52.Jun232016 15770 N 0 NA NA NA NA
162.G04.S76.Jun232016 15876 N 0 NA NA NA NA
165.S54.Jun172016 16210 T 0 NA NA NA NA
166.E06.S54.Jun232016 16243 N 0 NA NA NA NA
167.E05.S53.Jun232016 16243 T 0 16243 T 0.0 Below
168.S59.Jun172016 16418 N 1 NA NA NA NA
170.E02.S50.Jul202017 16549 N 0 NA NA NA NA
172.S65.Jun172016 16590 N 0 NA NA NA NA
173.S66.Jun172016 16590 T 0 NA NA NA NA
174.S76.Jun172016 16592 N 61 NA NA NA NA
175.S88.Jun172016 16592 T 38 16592 T 7.6 Above
175.S88.Jun172016 16592 T 38 16592 T 7.6 Below
176.H07.S91.Jul202017 16608 N 0 NA NA NA NA
179.F01.S61.Jul202017 16736 T 5 NA NA NA NA
178.F02.S62.Jul202017 16736 N 0 NA NA NA NA
227.S74.Jun172016 16745 N 1 NA NA NA NA
181.D02.S38.Jul202017 16745 T 0 NA NA NA NA
184.S61.Jun172016 16981 N 4 NA NA NA NA
185.G08.S80.Jun232016 17002 N 0 NA NA NA NA
186.S77.Jun172016 17206 N 0 NA NA NA NA
187.S78.Jun172016 17206 T 0 17206 T 0.0 Below
189.G05.S77.Jun232016 17223 T 0 17223 T -999.0 Below
188.G06.S78.Jun232016 17223 N 0 NA NA NA NA
191.G02.S74.Jul202017 17285 T 4 NA NA NA NA
190.G01.S73.Jul202017 17285 N 0 NA NA NA NA
194.H05.S89.Jun232016 17304 N 0 NA NA NA NA
195.H06.S90.Jun232016 17304 T 0 17304 T 0.0 Above
196.D08.S44.Jun232016 17353 N 0 NA NA NA NA
197.G07.S79.Jul202017 17435 N 0 NA NA NA NA
198.F03.S63.Jun232016 17493 N 0 NA NA NA NA
199.A11.S11.Jun232016 17512 N 3 NA NA NA NA
200.S96.Jun172016 17525 N 0 NA NA NA NA
201.H02.S86.Jun242016 17525 T 0 NA NA NA NA
202.D07.S43.Jul202017 17606 N 0 NA NA NA NA
205.S2.Jun172016 17683 T 383 17683 T 0.0 Below
204.S1.Jun172016 17683 N 158 NA NA NA NA
206.S51.Jun172016 17698 N 0 NA NA NA NA
233.G07.S79.Jun232016 17799 BO 2 17799 BO 0.4 Above
208.D03.S39.Jun232016 17842 N 0 NA NA NA NA
212.A08.S8.Jun232016 17918 T 0 17918 T 0.0 Above
211.A07.S7.Jun232016 17918 N 0 NA NA NA NA
NA NA NA NA 13732 BO -999.0 Above
NA NA NA NA 16555 BO -999.0 Above
NA NA NA NA 16976 BO -999.0 Above
NA NA NA NA 11802 BO -999.0 Above
NA NA NA NA 14130 BO -999.0 Above
NA NA NA NA 11267 NT -999.0 Above
NA NA NA NA 11271 NT -999.0 Above
NA NA NA NA 11455 NT -999.0 Above
NA NA NA NA 11455 T -999.0 Above
NA NA NA NA 11949 NT -999.0 Above
NA NA NA NA 12306 NT -999.0 Above
NA NA NA NA 12672 NT -999.0 Above
NA NA NA NA 13008 NT -999.0 Above
NA NA NA NA 13103 NT -999.0 Above
NA NA NA NA 13103 T -999.0 Above
NA NA NA NA 13270 NT -999.0 Above
NA NA NA NA 13318 NT -999.0 Above
NA NA NA NA 13318 T -999.0 Above
NA NA NA NA 13553 NT -999.0 Above
NA NA NA NA 13702 NT -999.0 Above
NA NA NA NA 13927 NT -999.0 Above
NA NA NA NA 13927 T -999.0 Above
NA NA NA NA 14719 NT -999.0 Above
NA NA NA NA 14719 T -999.0 Above
NA NA NA NA 15180 NT -999.0 Above
NA NA NA NA 15180 T -999.0 Above
NA NA NA NA 15239 NT -999.0 Above
NA NA NA NA 16034 NT -999.0 Above
NA NA NA NA 16034 T -999.0 Above
NA NA NA NA 16592 NT -999.0 Above
NA NA NA NA 17304 NT -999.0 Above
NA NA NA NA 17918 NT -999.0 Above
NA NA NA NA 13553 NT -999.0 Below
NA NA NA NA 12733 NT -999.0 Below
NA NA NA NA 12291 NT -999.0 Below
NA NA NA NA 12291 NT -999.0 Below
NA NA NA NA 12841 NT -999.0 Below
NA NA NA NA 12997 NT -999.0 Below
NA NA NA NA 12997 T -999.0 Below
NA NA NA NA 13103 NT -999.0 Below
NA NA NA NA 13103 T -999.0 Below
NA NA NA NA 16243 NT 0.2 Below
NA NA NA NA 16592 NT 0.0 Below
NA NA NA NA 16642 NT 0.0 Below
NA NA NA NA 16642 T 76.6 Below
NA NA NA NA 17206 NT -999.0 Below
NA NA NA NA 17223 NT 0.0 Below
NA NA NA NA 17683 NT -999.0 Below

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] car_3.0-8         carData_3.0-4     gvlma_1.0.0.3     patchwork_1.0.1  
 [5] viridis_0.5.1     viridisLite_0.3.0 gridExtra_2.3     xtable_1.8-4     
 [9] kableExtra_1.1.0  plyr_1.8.6        data.table_1.13.0 readxl_1.3.1     
[13] forcats_0.5.0     stringr_1.4.0     dplyr_1.0.1       purrr_0.3.4      
[17] readr_1.3.1       tidyr_1.1.1       tibble_3.0.3      ggplot2_3.3.2    
[21] tidyverse_1.3.0   lmerTest_3.1-2    lme4_1.1-23       Matrix_1.2-18    
[25] vegan_2.5-6       lattice_0.20-41   permute_0.9-5     phyloseq_1.32.0  
[29] workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] minqa_1.2.4         colorspace_1.4-1    rio_0.5.16         
 [4] ellipsis_0.3.1      rprojroot_1.3-2     XVector_0.28.0     
 [7] fs_1.5.0            rstudioapi_0.11     fansi_0.4.1        
[10] lubridate_1.7.9     xml2_1.3.2          codetools_0.2-16   
[13] splines_4.0.2       knitr_1.29          ade4_1.7-15        
[16] jsonlite_1.7.0      nloptr_1.2.2.2      broom_0.7.0        
[19] cluster_2.1.0       dbplyr_1.4.4        BiocManager_1.30.10
[22] compiler_4.0.2      httr_1.4.2          backports_1.1.7    
[25] assertthat_0.2.1    cli_2.0.2           later_1.1.0.1      
[28] htmltools_0.5.0     tools_4.0.2         igraph_1.2.5       
[31] gtable_0.3.0        glue_1.4.1          reshape2_1.4.4     
[34] Rcpp_1.0.5          Biobase_2.48.0      cellranger_1.1.0   
[37] vctrs_0.3.2         Biostrings_2.56.0   multtest_2.44.0    
[40] ape_5.4             nlme_3.1-148        iterators_1.0.12   
[43] xfun_0.19           openxlsx_4.1.5      rvest_0.3.6        
[46] lifecycle_0.2.0     statmod_1.4.34      zlibbioc_1.34.0    
[49] MASS_7.3-51.6       scales_1.1.1        hms_0.5.3          
[52] promises_1.1.1      parallel_4.0.2      biomformat_1.16.0  
[55] rhdf5_2.32.2        curl_4.3            yaml_2.2.1         
[58] stringi_1.4.6       highr_0.8           S4Vectors_0.26.1   
[61] foreach_1.5.0       BiocGenerics_0.34.0 zip_2.0.4          
[64] boot_1.3-25         rlang_0.4.7         pkgconfig_2.0.3    
[67] evaluate_0.14       Rhdf5lib_1.10.1     tidyselect_1.1.0   
[70] magrittr_1.5        R6_2.4.1            IRanges_2.22.2     
[73] generics_0.0.2      DBI_1.1.0           foreign_0.8-80     
[76] pillar_1.4.6        haven_2.3.1         whisker_0.4        
[79] withr_2.2.0         mgcv_1.8-31         abind_1.4-5        
[82] survival_3.2-3      modelr_0.1.8        crayon_1.3.4       
[85] rmarkdown_2.5       grid_4.0.2          blob_1.2.1         
[88] git2r_0.27.1        reprex_0.3.0        digest_0.6.25      
[91] webshot_0.5.2       httpuv_1.5.4        numDeriv_2016.8-1.1
[94] stats4_4.0.2        munsell_0.5.0