Last updated: 2022-08-19

Checks: 6 1

Knit directory: esoph-micro-cancer-workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d2f5c21. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data.zip
    Ignored:    data/
    Ignored:    output/Supplement Figure 2 (2).zip

Untracked files:
    Untracked:  output/slide-10-heatmap-2022-08-19.pdf
    Untracked:  output/slide-10-heatmap-2022-08-19.png
    Untracked:  output/slide-11-bar-chart-2022-08-19.pdf
    Untracked:  output/slide-11-bar-chart-2022-08-19.png
    Untracked:  output/slide-12-bar-chart-2022-08-19.pdf
    Untracked:  output/slide-12-bar-chart-2022-08-19.png
    Untracked:  output/slide-13-bar-chart-2022-08-19.pdf
    Untracked:  output/slide-13-bar-chart-2022-08-19.png
    Untracked:  output/slide-5-heatmap-001-2022-08-19.pdf
    Untracked:  output/slide-5-heatmap-001-2022-08-19.png
    Untracked:  output/slide-5-heatmap-01-2022-08-19.pdf
    Untracked:  output/slide-5-heatmap-01-2022-08-19.png
    Untracked:  output/slide-5-heatmap-05-2022-08-19.pdf
    Untracked:  output/slide-5-heatmap-05-2022-08-19.png
    Untracked:  output/slide-6-heatmap-001-2022-08-19.pdf
    Untracked:  output/slide-6-heatmap-001.-2022-08-19.png
    Untracked:  output/slide-6-heatmap-01-2022-08-19.pdf
    Untracked:  output/slide-6-heatmap-01-2022-08-19.png
    Untracked:  output/slide-6-heatmap-05-2022-08-19.pdf
    Untracked:  output/slide-6-heatmap-05-2022-08-19.png
    Untracked:  output/slide-7-heatmap-001-2022-08-19.pdf
    Untracked:  output/slide-7-heatmap-001-2022-08-19.png
    Untracked:  output/slide-7-heatmap-01-2022-08-19.pdf
    Untracked:  output/slide-7-heatmap-01-2022-08-19.png
    Untracked:  output/slide-7-heatmap-05-2022-08-19.pdf
    Untracked:  output/slide-7-heatmap-05-2022-08-19.png
    Untracked:  output/slide-8-heatmap-2022-08-19.pdf
    Untracked:  output/slide-8-heatmap-2022-08-19.png
    Untracked:  output/slide-9-heatmap-2022-08-19.pdf
    Untracked:  output/slide-9-heatmap-2022-08-19.png

Unstaged changes:
    Modified:   analysis/heatmaps-dendrograms-species-level.Rmd
    Modified:   analysis/slide-figures-heatmaps-dendrograms-updates.Rmd
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_NCI_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_rna_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2C_tcga_wgs_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_NCI_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_rna_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2D_tcga_wgs_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_NCI_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_rna_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2E_tcga_wgs_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_NCI_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_rna_strepto.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_campy.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_campy.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_combined.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_combined.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_fuso.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_fuso.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_prevo.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_prevo.png
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_strepto.pdf
    Modified:   output/Supplement Figure 2/supplemental_figure2F_tcga_wgs_strepto.png

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/heatmaps-dendrograms-species-level.Rmd) and HTML (docs/heatmaps-dendrograms-species-level.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd fe971b9 noah-padgett 2021-02-13 violin plot scale fixed
html fe971b9 noah-padgett 2021-02-13 violin plot scale fixed

Intro

This page contains the updated code for generating the joint figures of heatmaps with the dendrogram. The update was needed to fix how the OTUs were subset based on average relative abundance. Prior to each heatmap will be a table of the OTUs that meet the given criteria.

I figured out that I originally subset based on the OTU relative abundance for each individual and sample, meaning that I subset according the just the raw Abundance irrespective of any OTU average abundance. This mistake is corrected in this document.

Heatmaps and Dendrograms

Species Level - NCI 16S Data

Relative Abudance Cutoff: 0.05

analysis.dat <- dat.16s # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.05 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.250 Streptococcus_dentisani:Streptococcus_infantis:Streptococcus_mitis:Streptococcus_oligofermentans:Streptococcus_oralis:Streptococcus_pneumoniae:Streptococcus_pseudopneumoniae:Streptococcus_sanguinis
0.076 Pseudomonas_rhodesiae
0.058 Prevotella_melaninogenica
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)

plot.dat$OTU[plot.dat$OTU == "Streptococcus_dentisani:Streptococcus_infantis:Streptococcus_mitis:Streptococcus_oligofermentans:Streptococcus_oralis:Streptococcus_pneumoniae:Streptococcus_pseudopneumoniae:Streptococcus_sanguinis"] <- "Streptoccus spp.*"

# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# by parts
hmd <- filter(heatmap_data, sample_type == "Barretts Only")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "Barretts Only")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "BO", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.2, 0.2, 1, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="NCI-16s Data showing average relative abundance of species level by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%; *S. dentisani, S. infantis, S. mitis, S. oligofermentans, S. oralis, S. pneumoniae, S. pseudopneumoniae, S. sanguinis")
  )
p

if(save.plots == T){
  ggsave(paste0("output/nci-species-lvl-heatmap-05-",save.Date,".pdf"), plot=p, units="in", width=20, height=5)
  ggsave(paste0("output/nci-species-lvl-heatmap-05-",save.Date,".png"), plot=p, units="in", width=20, height=5)
}

Relative Abudance Cutoff: 0.01

analysis.dat <- dat.16s # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.01 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="400px")
AverageRelativeAbundance OTU
0.250 Streptococcus_dentisani:Streptococcus_infantis:Streptococcus_mitis:Streptococcus_oligofermentans:Streptococcus_oralis:Streptococcus_pneumoniae:Streptococcus_pseudopneumoniae:Streptococcus_sanguinis
0.076 Pseudomonas_rhodesiae
0.058 Prevotella_melaninogenica
0.046 Stenotrophomonas_maltophilia
0.042 Lactobacillus_gasseri:Lactobacillus_johnsonii
0.041 Veillonella_dispar
0.034 Acinetobacter_guillouiae
0.031 Fusobacterium_nucleatum
0.025 Rothia_mucilaginosa
0.024 Staphylococcus_epidermidis:Staphylococcus_hominis
0.022 Gemella_haemolysans
0.018 Selenomonas_sputigena
0.017 Granulicatella_adiacens:Granulicatella_paraadiacens
0.017 Haemophilus_parainfluenzae
0.016 otu19913:Actinobacillus_minor:Actinobacillus_porcinus:Actinobacillus_rossii:Haemophilus_paraphrohaemolyticus
0.012 otu16698:Tannerella_forsythia
0.011 Actinomyces_odontolyticus
0.010 Clostridium_perfringens:Clostridium_thermophilus
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)

plot.dat$OTU[plot.dat$OTU == "Streptococcus_dentisani:Streptococcus_infantis:Streptococcus_mitis:Streptococcus_oligofermentans:Streptococcus_oralis:Streptococcus_pneumoniae:Streptococcus_pseudopneumoniae:Streptococcus_sanguinis"] <- "Streptoccus spp.*"

# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# by parts
hmd <- filter(heatmap_data, sample_type == "Barretts Only")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "Barretts Only")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "BO", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())



# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.5, 0.2, 1, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="NCI-16s Data showing average relative abundance of genera by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/nci-species-lvl-heatmap-01-",save.Date,".pdf"), plot=p, units="in", width=25, height=7)
  ggsave(paste0("output/nci-species-lvl-heatmap-01-",save.Date,".png"), plot=p, units="in", width=25, height=7)
}

Specific OTUs

p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ plt_hmap4+
  plot_layout(
    nrow=1, widths = c(0.2, 0.2, 1, 1, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="NCI-16s Data showing average relative abundance of specific OTUs by individual"
  )
p

if(save.plots == T){
  ggsave(paste0("output/nci-specific-otus-heatmap-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/nci-specific-otus-heatmap-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

Species Level - TCGA RNAseq Data

The heatmaps for slide 6 focus on the TCGA RNAseq data.

Relative Abudance Cutoff: 0.05

analysis.dat <- dat.rna %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.05 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.426 Pseudomonas fluorescens group
0.320 Pseudomonas sp. UW4
0.075 Arthrobacter phenanthrenivorans
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.2, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA RNAseq Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-05-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-05-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

Relative Abudance Cutoff: 0.01

analysis.dat <- dat.rna %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.01 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.426 Pseudomonas fluorescens group
0.320 Pseudomonas sp. UW4
0.075 Arthrobacter phenanthrenivorans
0.041 Pseudomonas sp. UK4
0.029 Bradyrhizobium sp. BTAi1
0.027 Pseudomonas putida group
0.011 Bacillus cereus group
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.2, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA RNAseq Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-01-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-01-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

Relative Abudance Cutoff: 0.001

analysis.dat <- dat.rna %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.001 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.426 Pseudomonas fluorescens group
0.320 Pseudomonas sp. UW4
0.075 Arthrobacter phenanthrenivorans
0.041 Pseudomonas sp. UK4
0.029 Bradyrhizobium sp. BTAi1
0.027 Pseudomonas putida group
0.011 Bacillus cereus group
0.009 Propionibacterium acnes
0.006 Escherichia coli
0.004 Arthrobacter sp. FB24
0.004 Bacillus megaterium
0.003 Haemophilus influenzae
0.003 Pseudomonas aeruginosa group
0.003 Pseudomonas brassicacearum
0.002 Enterobacter cloacae complex
0.001 Psychrobacter sp. PRwf-1
0.001 Enterococcus faecalis
0.001 Arthrobacter chlorophenolicus
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.5, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA RNAseq Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-001-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/tcga-rna-species-lvl-heatmap-001-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

Specific OTUs

The heatmaps for slide 9 focus on the TCGA RNAseq data. The difference here is we focus on 4 OTUs.

p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.2, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA RNAseq Data showing average relative abundance of specific OTUs by individual"
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-rna-specific-otus-heatmap-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/tcga-rna-specific-otus-heatmap-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

Sepcies Level - TCGA WGS Data

The heatmaps for slide7 focus on the TCGA WGS data.

Relative Abudance Cutoff: 0.05

analysis.dat <- dat.wgs %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.05 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.465 Coprobacillus sp. D7
0.106 Propionibacterium acnes
0.074 Haemophilus influenzae
0.057 Prevotella melaninogenica
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.3, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA WGS Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-05-",save.Date,".pdf"), plot=p, units="in", width=20, height=5)
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-05-",save.Date,".png"), plot=p, units="in", width=20, height=5)
}

Relative Abudance Cutoff: 0.01

analysis.dat <- dat.wgs %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.01 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.465 Coprobacillus sp. D7
0.106 Propionibacterium acnes
0.074 Haemophilus influenzae
0.057 Prevotella melaninogenica
0.028 Cyanothece sp. CCY0110
0.027 Fusobacterium nucleatum
0.022 Campylobacter concisus
0.019 Bradyrhizobium sp. BTAi1
0.016 Bradyrhizobium diazoefficiens
0.014 Streptococcus pneumoniae
0.012 Bradyrhizobium japonicum
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.3, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA WGS Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-01-",save.Date,".pdf"), plot=p, units="in", width=20, height=5)
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-01-",save.Date,".png"), plot=p, units="in", width=20, height=5)
}

Relative Abudance Cutoff: 0.001

analysis.dat <- dat.wgs %>%
  dplyr::mutate(OTU = otu2) # insert dataset to be used in analysis
avgRelAbundCutoff <- 0.001 # minimum average relative abundance for OTUs


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))%>%
  dplyr::filter(AverageRelativeAbundance>=avgRelAbundCutoff) %>%
  dplyr::arrange(desc(AverageRelativeAbundance))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.465 Coprobacillus sp. D7
0.106 Propionibacterium acnes
0.074 Haemophilus influenzae
0.057 Prevotella melaninogenica
0.028 Cyanothece sp. CCY0110
0.027 Fusobacterium nucleatum
0.022 Campylobacter concisus
0.019 Bradyrhizobium sp. BTAi1
0.016 Bradyrhizobium diazoefficiens
0.014 Streptococcus pneumoniae
0.012 Bradyrhizobium japonicum
0.010 Bradyrhizobium sp. S23321
0.008 candidate division TM7 single-cell isolate TM7a
0.008 Veillonella parvula
0.008 Streptococcus parasanguinis
0.007 Rhodopseudomonas palustris
0.006 Pseudomonas fluorescens group
0.006 Bradyrhizobium sp. ORS 278
0.006 Streptococcus mitis
0.005 Beggiatoa sp. PS
0.004 Staphylococcus epidermidis
0.004 Corynebacterium tuberculostearicum
0.004 Streptococcus suis
0.003 Haemophilus parainfluenzae
0.003 Streptococcus pseudopneumoniae
0.003 Delftia sp. Cs1-4
0.003 Lactobacillus gasseri
0.003 [Eubacterium] hallii
0.002 Delftia acidovorans
0.002 Streptococcus oralis
0.002 Pseudomonas putida group
0.002 Streptococcus thermophilus
0.002 Pseudomonas aeruginosa group
0.002 Atopobium rimae
0.002 Prevotella intermedia
0.001 candidate division TM7 single-cell isolate TM7c
0.001 Acidovorax delafieldii
0.001 Staphylococcus capitis
0.001 Escherichia coli
0.001 Oligotropha carboxidovorans
0.001 Acinetobacter junii
0.001 Acidovorax ebreus
0.001 Lactococcus garvieae
0.001 Gemmata obscuriglobus
0.001 Lactobacillus crispatus
0.001 Streptococcus gordonii
0.001 Xanthomonas campestris
0.001 Bacteroides sp. 3_1_33FAA
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(aveAbund>=avgRelAbundCutoff) %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.3, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA WGS Data showing average relative abundance of species by individual",
    subtitle=paste0("Subset to OTU average relative abundance > ",prntRelAbund,"%")
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-001-",save.Date,".pdf"), plot=p, units="in", width=20, height=10)
  ggsave(paste0("output/tcga-wgs-species-lvl-heatmap-001-",save.Date,".png"), plot=p, units="in", width=20, height=10)
}

Specific OTUs

The heatmaps for slide76 focus on the TCGA WGS data.

analysis.dat <- dat.wgs.s # insert dataset to be used in analysis


otu.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::summarise(AverageRelativeAbundance=mean(Abundance, na.rm=T))

kable(otu.dat[,c(2,1)], format="html", digits=3) %>%
  kable_styling(full_width = T)%>%
  scroll_box(width="100%", height="100%")
AverageRelativeAbundance OTU
0.027 Fusobacterium nucleatum
0.005 Streptococcus spp.
0.022 Campylobacter concisus
0.057 Prevotella
plot.dat <- analysis.dat %>% filter(sample_type != "0") %>%
  dplyr::group_by(OTU) %>%
  dplyr::mutate(aveAbund=mean(Abundance, na.rm=T)) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(ID = as.factor(Patient_ID),
                Abundance = ifelse(is.na(Abundance), 0, Abundance)) %>%
  dplyr::select(sample_type, OTU, ID, Abundance, aveAbund)


# widen plot.dat for dendro
dat.wide <- plot.dat %>%
  dplyr::mutate(
    ID = paste0(ID, "_",sample_type)
  ) %>%
  dplyr::select(ID, OTU, Abundance) %>%
  dplyr::group_by(ID, OTU) %>%
  dplyr::summarise(
    Abundance = mean(Abundance)
  ) %>%
  tidyr::pivot_wider(
    id_cols = OTU,
    names_from = ID,
    values_from = Abundance,
    values_fill = 0
  )
rn <- dat.wide$OTU
mat <- as.matrix(dat.wide[,-1])
rownames(mat) <- rn

sample_names <- colnames(mat)

# Obtain the dendrogram
dend <- as.dendrogram(hclust(dist(mat)))
dend_data <- dendro_data(dend)

# Setup the data, so that the layout is inverted (this is more 
# "clear" than simply using coord_flip())
segment_data <- with(
  segment(dend_data), 
  data.frame(x = y, y = x, xend = yend, yend = xend))
# Use the dendrogram label data to position the gene labels
gene_pos_table <- with(
  dend_data$labels, 
  data.frame(y_center = x, gene = as.character(label), height = 1))

# Table to position the samples
sample_pos_table <- data.frame(sample = sample_names) %>%
  dplyr::mutate(x_center = (1:n()), 
         width = 1)

# Neglecting the gap parameters
heatmap_data <- mat %>% 
  reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
  left_join(gene_pos_table) %>%
  left_join(sample_pos_table)

# extract and rejoin sample IDs and sample_type names for plotting
# first for the heatmap data.frame
A <- str_split(heatmap_data$sample, "_")
heatmap_data$ID <- heatmap_data$sample_type <- "0"
for(i in 1:nrow(heatmap_data)){
  heatmap_data$ID[i] <- A[[i]][1]
  heatmap_data$sample_type[i] <- A[[i]][2]
}
# second for the sample position dataframe (dendo)
A <- str_split(sample_pos_table$sample, "_")
sample_pos_table$ID <- sample_pos_table$sample_type <- "0"
for(i in 1:nrow(sample_pos_table)){
  sample_pos_table$ID[i] <- A[[i]][1]
  sample_pos_table$sample_type[i] <- A[[i]][2]
}

# Limits for the vertical axes
gene_axis_limits <- with(
  gene_pos_table, 
  c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
) + 
  0.1 * c(-1, 1) # extra spacing: 0.1

## Build Heatmap Pieces
# EAC w/ Barrets
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap1 <- ggplot(hmd, 
                   aes(x = x_center, y = y_center, fill = expr, 
                       height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        # margin: top, right, bottom, and left
        #axis.ticks.y = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid = element_blank(),
        legend.position = "none")

# Part 2: "EAC-adjacent tissue w/ Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC-adjacent tissue w/ Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC-adjacent tissue w/ Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap2 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("expr",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.1, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC-adj. w/ Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.5,vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank(),
        legend.position = "none")

# Part 3: "EAC tissues w/o Barretts History"
hmd <- filter(heatmap_data, sample_type == "EAC tissues w/o Barretts History")
hmd$x_center <- as.numeric(as.factor(hmd$x_center))
spd <- filter(sample_pos_table, sample_type == "EAC tissues w/o Barretts History")
spd$x_center <- as.numeric(as.factor(spd$x_center))

plt_hmap3 <- ggplot(hmd, 
                    aes(x = x_center, y = y_center, fill = expr, 
                        height = height, width = width)) + 
  geom_tile() +
  #facet_wrap(.~sample_type)+
  scale_fill_gradient2("Abundance",trans="sqrt", high = "darkblue", low = "white", breaks=c(0, 0.10, 0.30, 0.50, 0.80)) +
  scale_x_continuous(breaks = spd$x_center, 
                     labels = spd$ID, 
                     expand = c(0, 0)) + 
  # For the y axis, alternatively set the labels as: gene_position_table$gene
  scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                     labels = rep("", nrow(gene_pos_table)),
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "EAC w/o Barretts", y = NULL) +
  theme_classic() +
  theme(axis.text.x = element_text(size = rel(1), hjust = 0.75, vjust=0.5, angle = 90), 
        axis.ticks.y = element_blank(),
        # margin: top, right, bottom, and left
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"), 
        panel.grid.minor = element_blank())


# Dendrogram plot
plt_dendr <- ggplot(segment_data) + 
  geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
  scale_x_reverse(expand = c(0, 0.5)) + 
  scale_y_continuous(breaks = gene_pos_table$y_center, 
                     labels = gene_pos_table$gene, 
                     limits = gene_axis_limits, 
                     expand = c(0, 0)) + 
  labs(x = "", y = "", colour = "", size = "") +
  theme_classic() + 
  theme(panel.grid = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.margin = unit(c(1, 0.01, 0.01, -0.7), "cm"))

prntRelAbund <- avgRelAbundCutoff*100
p <- plt_dendr+plt_hmap1+plt_hmap2+plt_hmap3+ 
  plot_layout(
    nrow=1, widths = c(0.5, 0.4, 0.15, 1),
    guides="collect"
  ) +
  plot_annotation(
    title="TCGA WGS Data showing average relative abundance of specific OTUs by individual"
  )
p

if(save.plots == T){
  ggsave(paste0("output/tcga-wgs-specific-otus-heatmap-",save.Date,".pdf"), plot=p, units="in", width=25, height=5)
  ggsave(paste0("output/tcga-wgs-specific-otus-heatmap-",save.Date,".png"), plot=p, units="in", width=25, height=5)
}

sessionInfo()
R version 4.2.0 (2022-04-22 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_1.1.1     dendextend_1.16.0 ggdendro_0.1.23   reshape2_1.4.4   
 [5] car_3.1-0         carData_3.0-5     gvlma_1.0.0.3     patchwork_1.1.1  
 [9] viridis_0.6.2     viridisLite_0.4.0 gridExtra_2.3     xtable_1.8-4     
[13] kableExtra_1.3.4  MASS_7.3-56       data.table_1.14.2 readxl_1.4.0     
[17] forcats_0.5.1     stringr_1.4.0     dplyr_1.0.9       purrr_0.3.4      
[21] readr_2.1.2       tidyr_1.2.0       tibble_3.1.7      ggplot2_3.3.6    
[25] tidyverse_1.3.2   lmerTest_3.1-3    lme4_1.1-30       Matrix_1.4-1     
[29] vegan_2.6-2       lattice_0.20-45   permute_0.9-7     phyloseq_1.40.0  
[33] workflowr_1.7.0  

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0      minqa_1.2.4            colorspace_2.0-3      
  [4] ellipsis_0.3.2         rprojroot_2.0.3        XVector_0.36.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.1          
 [10] fansi_1.0.3            lubridate_1.8.0        xml2_1.3.3            
 [13] codetools_0.2-18       splines_4.2.0          cachem_1.0.6          
 [16] knitr_1.39             ade4_1.7-19            jsonlite_1.8.0        
 [19] nloptr_2.0.3           broom_1.0.0            cluster_2.1.3         
 [22] dbplyr_2.2.1           BiocManager_1.30.18    compiler_4.2.0        
 [25] httr_1.4.3             backports_1.4.1        assertthat_0.2.1      
 [28] fastmap_1.1.0          gargle_1.2.0           cli_3.3.0             
 [31] later_1.3.0            htmltools_0.5.2        tools_4.2.0           
 [34] igraph_1.3.4           gtable_0.3.0           glue_1.6.2            
 [37] GenomeInfoDbData_1.2.8 Rcpp_1.0.8.3           Biobase_2.56.0        
 [40] cellranger_1.1.0       jquerylib_0.1.4        vctrs_0.4.1           
 [43] Biostrings_2.64.0      rhdf5filters_1.8.0     multtest_2.52.0       
 [46] svglite_2.1.0          ape_5.6-2              nlme_3.1-157          
 [49] iterators_1.0.14       xfun_0.31              ps_1.7.0              
 [52] rvest_1.0.2            lifecycle_1.0.1        googlesheets4_1.0.0   
 [55] getPass_0.2-2          zlibbioc_1.42.0        scales_1.2.0          
 [58] hms_1.1.1              promises_1.2.0.1       parallel_4.2.0        
 [61] biomformat_1.24.0      rhdf5_2.40.0           yaml_2.3.5            
 [64] sass_0.4.2             stringi_1.7.6          highr_0.9             
 [67] S4Vectors_0.34.0       foreach_1.5.2          BiocGenerics_0.42.0   
 [70] boot_1.3-28            GenomeInfoDb_1.32.2    systemfonts_1.0.4     
 [73] rlang_1.0.2            pkgconfig_2.0.3        bitops_1.0-7          
 [76] evaluate_0.15          Rhdf5lib_1.18.2        labeling_0.4.2        
 [79] processx_3.7.0         tidyselect_1.1.2       plyr_1.8.7            
 [82] magrittr_2.0.3         R6_2.5.1               IRanges_2.30.0        
 [85] generics_0.1.3         DBI_1.1.3              withr_2.5.0           
 [88] pillar_1.8.0           haven_2.5.0            whisker_0.4           
 [91] mgcv_1.8-40            abind_1.4-5            survival_3.3-1        
 [94] RCurl_1.98-1.8         modelr_0.1.8           crayon_1.5.1          
 [97] utf8_1.2.2             tzdb_0.3.0             rmarkdown_2.14        
[100] grid_4.2.0             callr_3.7.1            git2r_0.30.1          
[103] webshot_0.5.3          reprex_2.0.1           digest_0.6.29         
[106] httpuv_1.6.5           numDeriv_2016.8-1.1    stats4_4.2.0          
[109] munsell_0.5.0          bslib_0.4.0